Ontology Evolution in Data Integration: Query Rewriting to the Rescue

  • Haridimos Kondylakis
  • Dimitris Plexousakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6998)


The evolution of ontologies is an undisputed necessity in ontology-based data integration. In such systems ontologies are used as global schema in order to formulate queries that are answered by the data integration systems. Yet, few research efforts have focused on addressing the need to reflect ontology evolution onto the underlying data integration systems. In most of these systems, when ontologies change their relations with the data sources, i.e., the mappings, are recreated manually, a process which is known to be error-prone and time-consuming. In this paper, we provide a solution that allows query answering under evolving ontologies without mapping redefinition. To achieve that, query rewriting techniques are exploited in order to produce equivalent rewritings among ontology versions. Whenever equivalent rewritings cannot be produced we a) guide query redefinition or b) provide the best “over-approximations”. We show that our approach can greatly reduce human effort spent since continuous mapping redefinition on evolving ontologies is no longer necessary.


Data Integration Global Schema Query Expansion Conjunctive Query Change Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: The DL-lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data to ontologies. Journal on data semantics X, 133-173 (2008)Google Scholar
  3. 3.
    Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology change: Classification and survey. Knowl. Eng. Rev. 23, 117–152 (2008)CrossRefGoogle Scholar
  4. 4.
    Velegrakis, Y., Miller, J., Popa, L.: Preserving mapping consistency under schema changes. The VLDB Journal 13, 274–293 (2004)CrossRefGoogle Scholar
  5. 5.
    Curino, C.A., Moon, H.J., Ham, M., Zaniolo, C.: The PRISM Workwench: Database Schema Evolution without Tears. In: ICDE, pp. 1523–1526 (2009)Google Scholar
  6. 6.
    Kondylakis, H., Flouris, G., Plexousakis, D.: Ontology and schema evolution in data integration: Review and assessment. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5871, pp. 932–947. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Kondylakis, H.: Ontology Evolution in Data Integration. PhD Thesis, Computer Science Department. University of Crete, Heraklion (2010)Google Scholar
  8. 8.
    Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.-C.: Schema Mapping Evolution through Composition and Inversion. Schema Matching and Mapping. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the PRISM workbench. PVLDB 1, 761–772 (2008)Google Scholar
  10. 10.
    Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: On detecting high-level changes in RDF/S kBs. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 473–488. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Cali, A., Gottlob, G., Lukasiewicz, T.: Datalog+-: a unified approach to ontologies and integrity constraints. In: ICDT, pp. 14–30. ACM, St. Petersburg (2009)CrossRefGoogle Scholar
  12. 12.
    Kondylakis, H., Dimitris, P.: Exelixis: Evolving Ontology-Based Data Integration System. In: SIGMOD, pp. 1283-1286 (2011)Google Scholar
  13. 13.
    Lenzerini, M.: Data integration: a theoretical perspective. In: PODS (2002)Google Scholar
  14. 14.
    Perez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34, 1–45 (2009)CrossRefGoogle Scholar
  15. 15.
    Deutsch, A., Popa, L., Tannen, V.: Query reformulation with constraints. SIGMOD Rec 35, 65–73 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Haridimos Kondylakis
    • 1
  • Dimitris Plexousakis
    • 1
  1. 1.Information Systems LaboratoryFORTH-ICSGreece

Personalised recommendations