Effect of Affective Profile on Communication Patterns and Affective Expressions in Interactions with a Dialog System

  • Marcin Skowron
  • Mathias Theunis
  • Stefan Rank
  • Anna Borowiec
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6974)


Interlocutors’ affective profile and character traits play an important role in interactions. In the presented study, we apply a dialog system to investigate the effects of the affective profile on user-system communication patterns and users’ expressions of affective states. We describe the data-set acquired from experiments with the affective dialog system, the tools used for its annotation and findings regarding the effect of affective profile on participants’ communication style and affective expressions.


affective profile dialog system affective computing HCI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradley, M.M., Lang, P.J.: Affective norms for english words (anew): Stimuli, instruction manual and affective ratings. Univ. of Florida (1999)Google Scholar
  2. 2.
    Campano, S., Sabouret, N.: A socio-emotional model of impoliteness for non-player characters. In: Proc. of the 8th Int. Conf. on Autonomous Agents and Multiagent Systems, AAMAS 2009, pp. 1123–1124. Int. Foundation for Autonomous Agents and Multiagent Systems, Richland (2009)Google Scholar
  3. 3.
    Chung, C.K., Pennebaker, J.W.: Revealing dimensions of thinking in open-ended self-descriptions: An automated meaning extraction method for natural language. J. of Research in Personality 42, 96–132 (2008)CrossRefGoogle Scholar
  4. 4.
    D’Mello, S., Craig, S., Witherspoon, A., Sullins, J., McDaniel, B., Gholson, B., Graesser, A.: The relationship between affective states and dialog patterns during interactions with autotutor. In: Richards, G. (ed.) Proc. of World Conf. on E-Learning in Corporate, Government, Healthcare, and Higher Education 2005, pp. 2004–2011. AACE (October 2005)Google Scholar
  5. 5.
    Fontaine, J.R.J., Scherer, K.R., Roesch, E.B., Ellsworth, P.C.: The world of emotions is not two-dimensional. Psychological Science 18(12), 1050–1057 (2007)CrossRefGoogle Scholar
  6. 6.
    Forsyth, E., Martell, C.: Lexical and discourse analysis of online chat dialog. In: Proc. of the First IEEE Int. Conf. on Semantic Computing, pp. 19–26 (2007)Google Scholar
  7. 7.
    Gobron, S., Ahn, J., Quentin, S., Thalmann, D., Skowron, M., Rank, S., Paltoglou, G., Thelwall, M., Kappas, A.: 3d-emochatting: an interdisciplinary communication model for vr chatting. In Review (submitted)Google Scholar
  8. 8.
    Hatfield, E., Cacioppo, J.T., Rapson, R.L.: Emotional contagion. Current Directions in Psychological Science 2(3), 96–99 (1993)CrossRefGoogle Scholar
  9. 9.
    Hatfield, E., Cacioppo, J.T., Rapson, R.L.: Emotional Contagion. Cambridge Univ. Press, Cambridge (1994)Google Scholar
  10. 10.
    Hill, A.L., Rand, D.G., Nowak, M.A., Christakis, N.A.: Emotions as infectious diseases in a large social network: the sisa model. Proc. of the Royal Society B 277(1701), 3827–3835 (2010)CrossRefGoogle Scholar
  11. 11.
    Kappas, A., Kuester, D., Theunis, M., Tsankova, E.: Cyberemotions: Subjective and physiological responses to reading online discussion forums. In: Society for Psychophysiological Research Abstracts for the Fiftieth Annual Meeting (2010)Google Scholar
  12. 12.
    Kuppens, P., Oravecz, Z., Tuerlinckx, F.: Feelings change: Accounting for individual differences in the temporal dynamics of affect. Journal of Personality and Social Psychology 99(6), 1042–1060 (2010)CrossRefGoogle Scholar
  13. 13.
    Mairesse, F., Walker, M., Mehl, M., Moore, R.: Using linguistic cues for the automatic recognition of personality in conversation and text. J.of Artificial Intelligence Research 30, 457–500 (2007)zbMATHGoogle Scholar
  14. 14.
    Mehrabian, A., Russell, J.A.: An Approach to Environmental Psychology. MIT Press, Cambridge (1974)Google Scholar
  15. 15.
    Neviarouskaya, A., Prendinger, H., Ishizuka, M.: Affect analysis model: novel rule-based approach to affect sensing from text. Natural Language Engineering 17(1), 95–135 (2011)CrossRefGoogle Scholar
  16. 16.
    Paltoglou, G., Gobron, S., Skowron, M., Thelwall, M., Thalmann, D.: Sentiment analysis of informal textual communication in cyberspace. In: Proc. Engage 2010. Springer LNCS State-of-the-Art Survey, pp. 13–25 (2010)Google Scholar
  17. 17.
    Pennebaker, J.W., Francis, M.E., Booth, R.K.: Linguistic Inquiry and Word Count: LIWC 2001. Lawrence Erlbaum, Mahwah (2001)Google Scholar
  18. 18.
    Picard, R.W.: Emotion research by the people, for the people. Emotion Review 2 (2010)Google Scholar
  19. 19.
    Skowron, M.: Affect listeners. acquisition of affective states by means of conversational systems. In: Esposito, A., Campbell, N., Vogel, C., Hussain, A., Nijholt, A. (eds.) Second COST 2102. LNCS, vol. 5967, pp. 169–181. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Skowron, M., Paltoglou, G.: Affect bartender - affective cues and their application in a conversational agent. In: IEEE Symposium Series on Computational Intelligence 2011, Workshop on Affective Computational Intelligence. IEEE, Los Alamitos (2011)Google Scholar
  21. 21.
    Skowron, M., Pirker, H., Rank, S., Paltoglou, G., Ahn, J., Gobron, S.: No peanuts! affective cues for the virtual bartender. In: Proc. of the Florida Artificial Intelligence Research Society Conf. AAAI Press, Menlo Park (2011)Google Scholar
  22. 22.
    Skowron, M., Rank, S., Theunis, M., Sienkiewicz, J.: The good, the bad and the neutral: affective profile in dialog system-user communication. In: D’Mello, S., et al. (eds.) ACII 2011, Part I. LNCS, vol. 6974, pp. 337–346. Springer, Heidelberg (2011)Google Scholar
  23. 23.
    Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: Liwc and computerized text analysis methods. J. of Language and Social Psychology 29(1), 24–54 (2010)CrossRefGoogle Scholar
  24. 24.
    Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. J. of the American Society for Information Science and Technology 61(12), 2544–2558 (2010)CrossRefGoogle Scholar
  25. 25.
    Wilks, Y.: Is a companion a distinctive kind of relationship with a machine? In: Proc. of the 2010 Workshop on Companionable Dialogue Systems, Uppsala, Sweden, pp. 13–18. Association for Computational Linguistics (July 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marcin Skowron
    • 1
  • Mathias Theunis
    • 2
  • Stefan Rank
    • 1
  • Anna Borowiec
    • 3
  1. 1.Austrian Research Institute for Artificial IntelligenceViennaAustria
  2. 2.School of Humanities and Social SciencesJacobs UniversityBremenGermany
  3. 3.Gemius SAWarsawPoland

Personalised recommendations