Enhancing Document Snippets Using Temporal Information

  • Omar Alonso
  • Michael Gertz
  • Ricardo Baeza-Yates
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7024)


In this paper we propose an algorithm to enhance the quality of document snippets shown in a search engine by using temporal expressions. We evaluate our proposal in a subset of the Wikipedia corpus using crowdsourcing, showing that snippets that have temporal information are preferred by the users.


Temporal Order Temporal Information Temporal Expression Temporal Coverage Average Sentence Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso, O., Strötgen, J., Baeza-Yates, R., Gertz, M.: Temporal Information Retrieval: Challenges and Opportunities. In: TWAW Workshop, WWW 2011, pp. 1–8 (2011)Google Scholar
  2. 2.
    Alonso, O., Gertz, M., Baeza-Yates, R.: Temporal analysis of document collections: Framework and applications. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 290–296. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Mani, I., Pustejovsky, J., Gaizauskas, R. (eds.): The Language of Time. Oxford University Press, Oxford (2005)Google Scholar
  4. 4.
    Rose, D., Orr, D., Kantamneni, R.: Summary Attributes and Perceived Search Quality. In: 16th WWW, pp. 1201–1202 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Omar Alonso
    • 1
  • Michael Gertz
    • 2
  • Ricardo Baeza-Yates
    • 3
  1. 1.Microsoft Corp.Mountain ViewU.S.A.
  2. 2.Institute of Computer ScienceHeidelberg UniversityGermany
  3. 3.Yahoo! ResearchBarcelonaSpain

Personalised recommendations