Space Efficient Wavelet Tree Construction

  • Francisco Claude
  • Patrick K. Nicholson
  • Diego Seco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7024)

Abstract

Wavelet trees are one of the main building blocks in many space efficient data structures. In this paper, we present new algorithms for constructing wavelet trees, based on in-place sorting, that use virtually no extra space. Furthermore, we implement and confirm that these algorithms are practical by comparing them to a known construction algorithm. This represents a step forward for practical space-efficient data structures, by allowing their construction on more massive data sets.

Keywords

Construction Algorithm Cache Size Construction Time Extra Space Left Child 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arroyuelo, D., Navarro, G.: Space-efficient construction of lempel-ziv compressed text indexes. Information and Computation 209(7), 1070–1102 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice. In: Proc. ALENEX, pp. 84–97 (2010)Google Scholar
  3. 3.
    Barbay, J., Navarro, G.: Compressed representations of permutations, and applications. In: Proc. STACS, pp. 111–122 (2009)Google Scholar
  4. 4.
    Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation representations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Clark, D.: Compact Pat Trees. Ph.D. thesis, University of Waterloo (1996)Google Scholar
  7. 7.
    Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: Proc. SODA, pp. 383–391 (1996)Google Scholar
  8. 8.
    Claude, F., Navarro, G.: Practical rank/select queries over arbitrary sequences. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 176–187. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Claude, F., Navarro, G.: Self-indexed text compression using straight-line programs. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 235–246. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Claude, F., Fariña, A., Martínez-Prieto, M., Navarro, G.: Compressed q-gram indexing for highly repetitive biological sequences. In: Proc. BIBE, pp. 86–91 (2010)Google Scholar
  11. 11.
    Farzan, A., Gagie, T., Navarro, G.: Entropy-bounded representation of point grids. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 327–338. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Farzan, A.: Succinct Representation of Trees and Graphs. Ph.D. thesis, University of Waterloo (2009)Google Scholar
  13. 13.
    Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes: From theory to practice. ACM JEA 13, 30 pages (2009)MATHGoogle Scholar
  14. 14.
    Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations of sequences and full-text indexes. ACM Trans. on Alg. 3(2), article 20(2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fich, F., Munro, J.I., Poblete, P.: Permuting in place. SIAM J. on Comp. 24, 266 (1995)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a tool for text indexing. In: Proc. SODA, pp. 368–373 (2006)Google Scholar
  17. 17.
    Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proc. SODA, pp. 841–850 (2003)Google Scholar
  18. 18.
    Jacobson, G.: Space-efficient static trees and graphs. In: Proc. FOCS, pp. 549–554 (1989)Google Scholar
  19. 19.
    Keller, J.: A heuristic to accelerate in-situ permutation algorithms. Inf. Proc. Lett. 81(3), 119–125 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kreft, S., Navarro, G.: Self-indexing based on LZ77. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theo. Comp. Sci. 387, 332–347 (2007)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mäkinen, V., Välimäki, N.: Personal communicationGoogle Scholar
  23. 23.
    Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 37–42. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  24. 24.
    Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1), article 2 (2007)CrossRefMATHGoogle Scholar
  25. 25.
    Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In: Proc. SODA, pp. 233–242 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Francisco Claude
    • 1
  • Patrick K. Nicholson
    • 1
  • Diego Seco
    • 2
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooCanada
  2. 2.University of A CoruñaA CoruñaSpain

Personalised recommendations