ECOS: Evolutionary Column-Oriented Storage

  • Syed Saif ur Rahman
  • Eike Schallehn
  • Gunter Saake
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7051)


As DBMS has grown more powerful over the last decades, they have also become more complex to manage. To achieve efficiency by DBMS tuning is nowadays a hard task carried out by experts. This development inspired the ongoing research on self-tuning to make DBMS more easily manageable. We present a customizable self-tuning storage manager, we termed as Evolutionary Column-Oriented Storage (ECOS). The capability of self-tuning data management with minimal human intervention, which is the main design goal for ECOS, is achieved by dynamically adjusting the storage structures of a column-oriented storage manager according to data size and access characteristics. ECOS is based on the Decomposed Storage Model (DSM). It supports customization at the table-level using five different variations of DSM. ECOS also proposes fine-grained customization of storage structures at the column-level. It uses hierarchically-organized storage structures for each column, which enables autonomic selection of the suitable storage structure along the hierarchy using an evolution mechanism (as hierarchy-level increases). Moreover, for ECOS, we proposed the concept of an evolution path that provides a reduction of human intervention for database maintenance. We evaluated ECOS empirically using a custom micro benchmark showing performance improvement.


column-oriented storage evolving hierarchically-organized storage structures customization autonomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, D.J., Madden, S.R., Ferreira, M.C.: Integrating compression and execution in column-oriented database systems. In: SIGMOD, pp. 671–682 (2006)Google Scholar
  2. 2.
    Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: how different are they really? In: VLDB, pp. 967–980 (2008)Google Scholar
  3. 3.
    Agrawal, S., Chu, E., Narasayya, V.: Automatic physical design tuning: workload as a sequence. In: SIGMOD, pp. 683–694 (2006)Google Scholar
  4. 4.
    Batory, D.S.: On searching transposed files. ACM Trans. Database Syst. 4(4), 531–544 (1979)CrossRefGoogle Scholar
  5. 5.
    Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious B-trees. In: FOCS, pp. 399–409 (2000)Google Scholar
  6. 6.
    Chaudhuri, S., Weikum, G.: Rethinking Database System Architecture: Towards a Self-Tuning RISC-Style Database System. In: VLDB, pp. 1–10 (2000)Google Scholar
  7. 7.
    Chaudhuri, S., Weikum, G.: Foundations of automated database tuning. In: SIGMOD, pp. 964–965 (2005)Google Scholar
  8. 8.
    Chen, S., Gibbons, P.B., Mowry, T.C., Valentin, G.: Fractal prefetching B+-Trees: optimizing both cache and disk performance. In: SIGMOD, pp. 157–168 (2002)Google Scholar
  9. 9.
    Chmiel, J., Morzy, T., Wrembel, R.: HOBI: Hierarchically Organized Bitmap Index for Indexing Dimensional Data. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 87–98. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Copeland, G.P., Khoshafian, S.N.: A decomposition storage model. SIGMOD Rec. 14, 268–279 (1985)CrossRefGoogle Scholar
  11. 11.
    Hellerstein, J.L.: Automated tuning systems: Beyond decision support. In: CMG, Computer Measurement Group, pp. 263–270 (1997)Google Scholar
  12. 12.
    Holloway, A.L., DeWitt, D.J.: Read-optimized databases, in depth. Proc. VLDB Endow. 1, 502–513 (2008)CrossRefGoogle Scholar
  13. 13.
    Malik, T., Wang, X., Burns, R., Dash, D., Ailamaki, A.: Automated physical design in database caches. In: ICDE Workshop, pp. 27–34 (2008)Google Scholar
  14. 14.
    Morzy, M., Morzy, T., Nanopoulos, A., Manolopoulos, Y.: Hierarchical Bitmap Index: An Efficient and Scalable Indexing Technique for Set-Valued Attributes. In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798, pp. 236–252. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Papadomanolakis, S., Dash, D., Ailamaki, A.: Efficient use of the query optimizer for automated physical design. In: VLDB, pp. 1093–1104 (2007)Google Scholar
  16. 16.
    Patterson, D.A., Ditzel, D.R.: The case for the reduced instruction set computer. SIGARCH Comput. Archit. News 8, 25–33 (1980)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    ur Rahman, S.S.: Using Evolving Storage Structures for Data Storage. In: FIT, pp. 30:1–30:6 (2010)Google Scholar
  19. 19.
    ur Rahman, S.S., Schallehn, E., Saake, G.: ECOS: Evolutionary Column-Oriented Storage. Tech. Rep. FIN-03-2011, Department of Technical and Business Information Systems, Faculty of Computer Science, University of Magdeburg (2011)Google Scholar
  20. 20.
    Valduriez, P., Khoshafian, S.N., Copeland, G.P.: Implementation Techniques of Complex Objects. VLDB, 101–110 (1986)Google Scholar
  21. 21.
  22. 22.
    Weikum, G., Moenkeberg, A., Hasse, C., Zabback, P.: Self-tuning database technology and information services: from wishful thinking to viable engineering. In: VLDB, pp. 20–31 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Syed Saif ur Rahman
    • 1
  • Eike Schallehn
    • 1
  • Gunter Saake
    • 1
  1. 1.Faculty of Computer ScienceOtto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations