EmoWisconsin: An Emotional Children Speech Database in Mexican Spanish

  • Humberto Pérez-Espinosa
  • Carlos Aleberto Reyes-García
  • Luis Villaseñor-Pineda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6975)

Abstract

The acquisition of naturalistic speech data and the richness of its annotation are very important to face the challenges of automatic emotion recognition from speech. This paper describes the creation of a database of emotional speech in the Spanish spoken in Mexico. It was recorded from children between 7 and 13 years old while playing a sorting card game with an adult examiner. The game is based on a neuropsychological test, modified to encourage dialogue and induce emotions in the player. The audio was segmented at speaker turn level and annotated with six emotional categories and three continuous emotion primitives by 11 human evaluators. Inter-evaluator agreement is presented for categorical and continuous annotation. Initial classification and regression experiments were performed using a set of 6,552 acoustic features.

Index Terms

emotional speech corpus continuous emotion model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrilian, S., Devillers, L., Buisine, S., Martin, J.C.: Emotv1: Annotation of real-life emotions for the specification of multimodal affective interfaces. In: 11th International Conference Human-Computer Interaction (2005)Google Scholar
  2. 2.
    Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B.: A database of german emotional speech. In: Interspeech 2005, Lissabon, pp. 1517–1520. International Speech Communication Association (2005)Google Scholar
  3. 3.
    Busso, C., Bulut, M., Lee, C.-C., Kazemzadeh, A., Mower, E., Kim, S., Chang, J., Lee, S., Narayanan, S.S.: Iemocap: Interactive emotional dyadic motion capture database. Language Resources and Evaluation 42(4), 335–359 (2008)CrossRefGoogle Scholar
  4. 4.
    Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E., Sawey, M.: Feeltrace: An instrument for recording perceived emotion in real time. In: ISCA Workshop on Speech and Emotion, pp. 19–24 (2000)Google Scholar
  5. 5.
    Cronbach, L.: Coefficient alpha and the internal structure of tests. Psychometrika 16(3), 297–334 (1951)CrossRefMATHGoogle Scholar
  6. 6.
    Dalgleish, T., Power, M.: Handbook of cognition and emotion (March 1999)Google Scholar
  7. 7.
    Devillers, L., Martin, J.-C.: Coding emotional events in audiovisual corpora. In: LREC 2008, pp. 1259–1265 (2008)Google Scholar
  8. 8.
    Douglas-Cowie, E., Cowie, R., Sneddon, Cox, C., Lowry, M., Martin, J.C., Devillers, L., Batliner, A.: The humaine database: addressing the needs of the affective computing community. In: Paiva, A., Prada, R., Picard, R. (eds.) 2nd International Conference on Affective Computing and Intelligent Interaction (ACII’2007), Lisbon, Portugal 12-14 September. pp. 488–500. Springer, LNCS (2007)CrossRefGoogle Scholar
  9. 9.
    Eyben, F., Wollmer, M., Schuller, B.: openear - introducing the munich open-source emotion and affect recognition toolkit. In: Proc. 4th International HUMAINE Association Conference on Affective Computing and Intelligent Interaction 2009, pp. 1–6 (2009)Google Scholar
  10. 10.
    Grant, D.A., Berg, E.A.: A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a weigl-type card-sorting problem 38, 404–411 (1948)Google Scholar
  11. 11.
    Grimm, M., Kroschel, K., Narayanan, S.: The vera am mittag german audio-visual emotional speech database. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2008), pp. 865–868 (2008)Google Scholar
  12. 12.
    Gunes, H., Schuller, B., Pantic, M., Cowie, R.: Emotion representation, analysis and synthesis in continuous space: A survey. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition (FG 2011), EmoSPACE 2011 - 1st International Workshop on Emotion Synthesis, rePresentation, and Analysis in Continuous spacE, Santa Barbara, CA, USA (March 2011)Google Scholar
  13. 13.
    Lang, P.J.: Behavioral treatment and bio-behavioral assessment: Computer applications. In: Sidowski, J.B., Johnson, J.H., Williams, T.A. (eds.) Technology in Mental Health Care Delivery Systems, pp. 119–137. Ablex Pub. Corp., Norwood (1980)Google Scholar
  14. 14.
    Montero, J.: Estrategias para la mejora de la naturalidad y la incorporación de variedad emocional a la conversión texto a voz en castellano. Ph.D. thesis, Universidad Politécnica de Madrid (2003)Google Scholar
  15. 15.
    Nyhus, E., Barcelo, F.: The wisconsin card sorting test and the cognitive assessment of prefrontal executive functions: a critical update. Brain Cogn. 71(3), 437–451 (2009)CrossRefGoogle Scholar
  16. 16.
    Pérez-Espinosa, H., Reyes-García, C.A., VillaseñorPineda, L.: Features selection for primitives estimation on emotional speech. In: International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2010), pp. 5138–5141. Institute of Electrical and Electronics Engineers, Dallas (2010)Google Scholar
  17. 17.
    Pérez-Espinosa, H., Reyes-García, C.A., VillaseñorPineda, L.: Acoustic feature selection and classification of emotions in speech using a 3d continuous emotion model. Biomedical Signal Processing and Control (in Press, 2011) Google Scholar
  18. 18.
    Pérez-Espinosa, H., Reyes-García, C.A., VillaseñorPineda, L.: Bilingual acoustic feature selection for emotion estimation using a 3d continuous model. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition (FG 2011), EmoSPACE 2011 - 1st International Workshop on Emotion Synthesis, Representation, and Analysis in Continuous Space, Santa Barbara, CA, USA (March 2011)Google Scholar
  19. 19.
    Planet, S., Iriondo, I., Martínez, E., Montero, J.A.: True: an online testing platform for multimedia evaluation. In: Proceedings of the Second International Workshop on EMOTION: Corpora for Research on Emotion and Affect at the 6th Conference on Language Resources & Evaluation (LREC 2008), Marrakech, Morocco (2008)Google Scholar
  20. 20.
    Scherer, K.R., Ceschi, G.: Lost luggage: A field study of emotion-antecedent appraisal. Motivation and Emotion 21, 211–235 (1997)CrossRefGoogle Scholar
  21. 21.
    Schlosberg, H.: Three dimensions of emotion. Psychological Review 61(2), 81–88 (1954)CrossRefGoogle Scholar
  22. 22.
    Schuller, B., Steidl, S., Batliner, A.: The interspeech 2009 emotion challenge. In: Interspeech, pp. 312–315 (2009)Google Scholar
  23. 23.
    Steidl, S.: Automatic Classification of Emotion-Related User States in Spontaneous Children’s Speech, 1st edn. Logos Verlag (2009)Google Scholar
  24. 24.
    Vidrascu, L., Devillers, L.: Real-life emotions in naturalistic data recorded in a medical call center. In: LREC 2006 Workshop: Emotion (2006)Google Scholar
  25. 25.
    Warrens, M.: Inequalities between multi-rater kappas. Advances in Data Analysis and Classification 4(4), 271–286 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, 1st edn. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Francisco (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Humberto Pérez-Espinosa
    • 1
  • Carlos Aleberto Reyes-García
    • 1
  • Luis Villaseñor-Pineda
    • 1
  1. 1.Instituto Nacional de Astrofísica Óptica y ElectrónicaPueblaMéxico

Personalised recommendations