Distributed Theorem Proving for Distributed Hybrid Systems

  • David W. Renshaw
  • Sarah M. Loos
  • André Platzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6991)

Abstract

Distributed hybrid systems present extraordinarily challenging problems for verification. On top of the notorious difficulties associated with distributed systems, they also exhibit continuous dynamics described by quantified differential equations. All serious proofs rely on decision procedures for real arithmetic, which can be extremely expensive. Quantified Differential Dynamic Logic (Qd\(\mathcal{L}\)) has been identified as a promising approach for getting a handle in this domain. Qd\(\mathcal{L}\) has been proved to be complete relative to quantified differential equations. But important questions remain as to how best to translate this theoretical result into practice: how do we succinctly specify a proof search strategy, and how do we control the computational cost? We address the problem of automated theorem proving for distributed hybrid systems. We identify a simple mode of use of Qd\(\mathcal{L}\) that cuts down on the enormous number of choices that it otherwise allows during proof search. We have designed a powerful strategy and tactics language for directing proof search. With these techniques, we have implemented a new automated theorem prover called KeYmaeraD. To overcome the high computational complexity of distributed hybrid systems verification, KeYmaeraD uses a distributed proving backend. We have experimentally observed that calls to the real arithmetic decision procedure can effectively be made in parallel. In this paper, we demonstrate these findings through an extended case study where we prove absence of collisions in a distributed car control system with a varying number of arbitrarily many cars.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althoff, M., Althoff, D., Wollherr, D., Buss, M.: Safety verification of autonomous vehicles for coordinated evasive maneuvers. In: IEEE IV 2010, pp. 1078–1083 (2010)Google Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax and consistent equation semantics of hybrid Chi. J. Log. Algebr. Program. 68(1-2), 129–210 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chang, J., Cohen, D., Blincoe, L., Subramanian, R., Lombardo, L.: CICAS-V research on comprehensive costs of intersection crashes. Tech. Rep. 07-0016, NHTSA (2007)Google Scholar
  5. 5.
    Chee, W., Tomizuka, M.: Vehicle lane change maneuver in automated highway systems. PATH Research Report UCB-ITS-PRR-94-22, UC Berkeley (1994)Google Scholar
  6. 6.
    Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents. International Journal of Control 79(5), 395–421 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dao, T.S., Clark, C.M., Huissoon, J.P.: Optimized lane assignment using inter-vehicle communication. In: IEEE IV 2007, pp. 1217–1222 (2007)Google Scholar
  8. 8.
    Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: A formalism and a programming language for dynamic networks of hybrid automata. In: Hybrid Systems, pp. 113–133 (1996)Google Scholar
  9. 9.
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. STTT 10(3), 263–279 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hall, R., Chin, C.: Vehicle sorting for platoon formation: Impacts on highway entry and troughput. PATH Research Report UCB-ITS-PRR-2002-07, UC Berkeley (2002)Google Scholar
  11. 11.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. In: LICS, pp. 394–406 (1992)Google Scholar
  12. 12.
    Hespanha, J.P., Tiwari, A. (eds.): Hybrid Systems: Computation and Control, 9th International Workshop, HSCC 2006. LNCS, vol. 3927. Springer, Heidelberg (2006)MATHGoogle Scholar
  13. 13.
    Howe, D.J.: Automating Reasoning in an Implementation of Constructive Type Theory. Ph.D. thesis, Cornell University (1988)Google Scholar
  14. 14.
    Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane changing and merging. PATH Research Report UCB-ITS-PRR-99-13, UC Berkeley (1999)Google Scholar
  15. 15.
    Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-charon, a modeling language for reconfigurable hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 392–406. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed, and now formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Lygeros, J., Lynch, N.: Strings of vehicles: Modeling safety conditions. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, Springer, Heidelberg (1998)Google Scholar
  18. 18.
    Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 305–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Matthews, D.C.J., Wenzel, M.: Efficient parallel programming in Poly/ML and Isabelle/ML. In: DAMP (2010)Google Scholar
  20. 20.
    Meseguer, J., Sharykin, R.: Specification and analysis of distributed object-based stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 460–475. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated Reasoning 5 (1989)Google Scholar
  22. 22.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)CrossRefMATHGoogle Scholar
  25. 25.
    Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Platzer, A.: Quantified differential invariants. In: Frazzoli, E., Grosu, R. (eds.) HSCC. ACM, New York (2011)Google Scholar
  27. 27.
    Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Rounds, W.C.: A spatial logic for the hybrid p-calculus. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 508–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control system using counterexample-guided search. Control Engineering Practice (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David W. Renshaw
    • 1
  • Sarah M. Loos
    • 1
  • André Platzer
    • 1
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations