A Formal Engineering Approach to High-Level Design of Situation Analysis Decision Support Systems

  • Roozbeh Farahbod
  • Vladimir Avram
  • Uwe Glässer
  • Adel Guitouni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6991)

Abstract

We apply the Abstract State Machine (ASM) method and the CoreASM tool to design and analysis of Situation Analysis Decision Support (SADS) systems. Realistic situation analysis scenarios routinely deal with situations involving multiple mobile agents reacting to discrete events distributed in space and time. SADS system engineering practices call for systematic formal modeling approaches to manage complexity through modularization, refinement and validation of abstract models. We explore here SADS system design based on ASM modeling techniques paired with CoreASM tool support to facilitate analysis of the problem space and reasoning about design decisions and conformance criteria so as to ensure they are properly established and well understood prior to building the system. We provide an extension to CoreASM for the Marine Safety & Security domain, specifically for capturing rendezvous scenarios. The extension yields the necessary background concepts, such as mobile sensors and shipping lanes, and offers runtime visualization of simulation runs together with an analyzer to measure success of various rendezvous detection strategies used in the model. We illustrate the application of the proposed approach using a sample rendezvous scenario.

Keywords

Decision Support System Situation Awareness Ground Model Situation Analysis Extension Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altenhofen, M., Farahbod, R.: Bârun: A scripting language for coreASM. In: Frappier, M., et al. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 47–60. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Baader, F., et al.: A novel architecture for situation awareness systems. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 77–92. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Börger, E.: Why Use Evolving Algebras for Hardware and Software Engineering? In: Bartosek, M., Staudek, J., Wiedermann, J. (eds.) SOFSEM 1995. LNCS, vol. 1012, pp. 236–271. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Börger, E.: The ASM ground model method as a foundation of requirements engineering. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 145–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Börger, E., Glässer, U., Müller, W.: Formal Definition of an Abstract VHDL 1993 Simulator by EA-Machines. In: Delgado Kloos, C., Breuer, P.T. (eds.) Formal Semantics for VHDL, pp. 107–139. Kluwer Academic Publishers, Dordrecht (1995)CrossRefGoogle Scholar
  6. 6.
    Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, Heidelberg (2003)CrossRefMATHGoogle Scholar
  7. 7.
    Börger, E.: Construction and analysis of ground models and their refinements as a foundation for validating computer based systems. Formal Aspects of Computing 19(2), 225–241 (2007)CrossRefMATHGoogle Scholar
  8. 8.
    Bossé, É., Jousselme, A.L., Maupin, P.: Situation analysis for decision support: A formal approach. In: Proc. of the 10th Intl. Conf.  on Information Fusion (2007)Google Scholar
  9. 9.
    Brannon, N.G., et al.: Coordinated machine learning and decision support for situation awareness. Neural Networks 22(3), 316–325 (2009)CrossRefGoogle Scholar
  10. 10.
    Brantingham, P.L., Glässer, U., Jackson, P., Vajihollahi, M.: Modeling criminal activity in urban landscapes. In: Memon, N., Farley, J.D., Hicks, D.L., Rosenoørn, T. (eds.) Mathematical Methods in Counterterrorism, pp. 9–31. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Chmielewski, M.: Ontology applications for achieving situation awareness in military decision support systems. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 528–539. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Endsley, M.R.: Theoretical underpinnings of situation awareness: A critical review. In: Endsley, M.R., Garland, D.J. (eds.) Situation Awareness Analysis and Measurement, LEA (2000)Google Scholar
  13. 13.
    Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution engine. Fundamenta Informaticae, 71–103 (2007)Google Scholar
  14. 14.
    Farahbod, R., Gervasi, V., Glässer, U., Ma, G.: coreASM plug-in architecture. In: Abrial, J.-R., Glässer, U. (eds.) Rigorous Methods for Software Construction and Analysis. LNCS, vol. 5115, pp. 147–169. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Farahbod, R., Glässer, U.: The CoreASM modeling framework. Software: Practice and Experience 41(2), 167–178 (2011)Google Scholar
  16. 16.
    Farahbod, R., Glässer, U., Bossé, E., Guitouni, A.: Integrating abstract state machines and interpreted systems for situation analysis decision support design. In: Proc. of the 11th Intl. Conf. on Information Fusion, Köln, Germany (July 2008)Google Scholar
  17. 17.
    Farahbod, R., Glässer, U., Khalili, A.: A multi-layer network architecture for dynamic resource configuration & management of multiple mobile resources in maritime surveillance. In: Proc. of SPIE Defense & Security Symposium, Orlando, Florida, USA (March 2009)Google Scholar
  18. 18.
    Farahbod, R.: CoreASM: An Extensible Modeling Framework & Tool Environment for High-level Design and Analysis of Distributed Systems. Ph.D. thesis, Simon Fraser Univ., BC, Canada (May 2009)Google Scholar
  19. 19.
    Farahbod, R., Avram, V., Glässer, U., Guitouni, A.: Engineering situation analysis decision support systems. In: European Intelligence and Security Informatics Conference, Athens, Greece (2011)Google Scholar
  20. 20.
    Garland, D.J., Endsley, M.R.: Situation Awareness: Analysis and Measurement. CRC Press, Boca Raton (2000)Google Scholar
  21. 21.
    Glässer, U., Gotzhein, R., Prinz, A.: The formal semantics of SDL-2000: Status and perspectives. Computer Networks 42(3), 343–358 (2003)CrossRefMATHGoogle Scholar
  22. 22.
    Glässer, U., Gurevich, Y., Veanes, M.: Abstract communication model for distributed systems. IEEE Trans. on Soft. Eng. 30(7), 458–472 (2004)CrossRefGoogle Scholar
  23. 23.
    Glässer, U., et al.: A collaborative decision support model for marine safety and security operations. In: Hinchey, M., et al. (eds.) DIPES 2010. IFIP AICT, vol. 329, pp. 266–277. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specification and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)Google Scholar
  25. 25.
    Jakobson, G., Lewis, L., Buford, C., Sherman, C.: Battlespace situation analysis: The dynamic cbr approach. In: Military Communications Conf., vol. 2, pp. 941–947 (October 2004)Google Scholar
  26. 26.
    Jousselme, A.L., Maupin, P.: Interpreted systems for situation analysis. In: Proc. of the 10th Intl. Conf. on Information Fusion, Québec, Canada (July 2007)Google Scholar
  27. 27.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering 82(Series D), 35–45 (1960)CrossRefGoogle Scholar
  28. 28.
    Klashner, R., Sabet, S.: A DSS design model for complex problems: Lessons from mission critical infrastructure. Decision Support Systems 43, 990–1013 (2007)CrossRefGoogle Scholar
  29. 29.
    Lambert, D.A.: STDF model based maritime situation assessments. In: Proc. of the 10th Intl. Conf.  on Information Fusion (July 2007)Google Scholar
  30. 30.
    McDermid, J.: Science of software design: Architectures for evolvable, dependable systems. In: NSF Workshop on the Science of Design: Software and Software-Intensive Systems, Airlie Center, VA (2003)Google Scholar
  31. 31.
    Nemati, H., Steiger, D., Iyer, L., Herschel, R.: Knowledge warehouse: an architectural integration of knowledge management, decision support, artificial intelligence and data warehousing. Decision Support Systems 33(2), 143–161 (2002)CrossRefGoogle Scholar
  32. 32.
    Ryu, Y.U.: Constraint logic programming framework for integrated decision supports. Decision Support Systems 22(2), 155–170 (1998)CrossRefGoogle Scholar
  33. 33.
    Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., Carlsson, C.: Past, present, and future of decision support technology. Decision Support Systems 33(2), 111–126 (2002)CrossRefGoogle Scholar
  34. 34.
    Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition, Verification, Validation. Springer, Heidelberg (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roozbeh Farahbod
    • 1
  • Vladimir Avram
    • 2
  • Uwe Glässer
    • 2
  • Adel Guitouni
    • 1
  1. 1.Defence R&D CanadaValcartierCanada
  2. 2.Computing ScienceSimon Fraser UniversityBritish ColumbiaCanada

Personalised recommendations