Do MicroRNAs Preferentially Target the Genes with Low DNA Methylation Level at the Promoter Region?

  • Zhixi Su
  • Junfeng Xia
  • Zhongming Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6840)

Abstract

DNA methylation in genes’ promoter regions and microRNA (miRNA) regulation at the 3’ untranslated regions (UTRs) are two major epigenetic regulation mechanisms in majority of eukaryotes. Both DNA methylation of gene’s 5’promoter region and miRNA targeting 3’ UTR can suppress gene expression and play very important roles in regulating many cellular processes. Although the gene silencing role of both promoter methylation regulation and the miRNA targeting have been well investigated, the relationship between them remains largely unknown. In this study, we used human single base-resolution methylome data of two cell lines to investigate the relationship between them. Our preliminary results suggested that there is a functional complementation between transcriptional promoter methylation and post-transcriptional miRNA regulation, suggesting a possible combined regulation system in the cellular system.

Keywords

DNA methylation microRNA gene expression epigenetic regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Egger, G., Liang, G., Aparicio, A., Jones, P.A.: Epigenetics in Human Disease and Prospects for Epigenetic Therapy. Nature 429, 457–463 (2004)CrossRefGoogle Scholar
  2. 2.
    Bestor, T.H.: The DNA Methyltransferases of Mammals. Hum. Mol. Genet. 9, 2395–2402 (2000)CrossRefGoogle Scholar
  3. 3.
    Brown, S.E., Fraga, M.F., Weaver, I.C., Berdasco, M., Szyf, M.: Variations in DNA Methylation Patterns during the Cell Cycle of HeLa Cells. Epigenetics 2, 54–65 (2007)CrossRefGoogle Scholar
  4. 4.
    Li, E., Bestor, T.H., Jaenisch, R.: Targeted Mutation of the DNA Methyltransferase Gene Results in Embryonic Lethality. Cell 69, 915–926 (1992)CrossRefGoogle Scholar
  5. 5.
    Lippman, Z., Gendre, A.V., Black, M., Vaughn, M.W., Dedhia, N., et al.: Role of Transposable Elements in Heterochromatin and Epigenetic Control. Nature 430, 471–476 (2004)CrossRefGoogle Scholar
  6. 6.
    Lister, R., O’Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., et al.: Highly Integrated Single-base Resolution Maps of the Epigenome in Arabidopsis. Cell 133, 523–536 (2008)CrossRefGoogle Scholar
  7. 7.
    Weber, M., Hellmann, I., Stadler, M.B., Ramos, L., Paabo, S., et al.: Distribution, Silencing Potential and Evolutionary Impact of Promoter DNA Methylation in the Human Genome. Nat. Genet. 39, 457–466 (2007)CrossRefGoogle Scholar
  8. 8.
    Su, Z., Han, L., Zhao, Z.: Conservation and Divergence of DNA Methylation in Eukaryotes: New Insights from Single Base-resolution DNA Methylomes. Epigenetics 6(2), 134–140 (2011)CrossRefGoogle Scholar
  9. 9.
    Filipowicz, W., Bhattacharyya, S.N., Sonenberg, N.: Mechanisms of Post-transcriptional Regulation by MicroRNAs: Are the Answers in Sight? Nat. Rev. Genet. 9, 102–114 (2008)CrossRefGoogle Scholar
  10. 10.
    Friedman, L.M., Dror, A.A., Mor, E., Tenne, T., Toren, G., et al.: MicroRNAs Are Essential for Development and Function of Inner Ear Hair Cells in Vertebrates. Proc. Natl. Acad. Sci USA 106, 7915–7920 (2009)CrossRefGoogle Scholar
  11. 11.
    Griffiths-Jones, S., Saini, H.K., van Dongen, S., Enright, A.J.: Mirbase: Tools for Microrna Genomics. Nucleic Acids Res. 158, D154–D158 (2008)Google Scholar
  12. 12.
    Li, Y., Zhu, J., Tian, G., Li, N., Li, Q., et al.: The DNA Methylome of Human Peripheral Blood Mononuclear Cells. PLoS Biol. 8, e1000533 (2011)CrossRefGoogle Scholar
  13. 13.
    Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., et al.: Human DNA Methylomes at Base Resolution Show Widespread Epigenomic Differences. Nature 462, 315–322 (2009)CrossRefGoogle Scholar
  14. 14.
    Zemach, A., McDaniel, I.E., Silva, P., Zilberman, D.: Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation. Science 328, 916–919 (2010)CrossRefGoogle Scholar
  15. 15.
    Kasprzyk, A., Keefe, D., Smedley, D., London, D., Spooner, W., et al.: EnsMart: A Generic System for Fast and Flexible Access to Biological Data. Genome Res. 14, 160–169 (2004)CrossRefGoogle Scholar
  16. 16.
    Elango, N., Hunt, B.G., Goodisman, M.A., Yi, S.V.: DNA Methylation Is Widespread and Associated with Differential Gene Expression in Castes of the Honeybee, Apis Mellifera. Proc. Natl. Acad. Sci. USA 106, 11206–11211 (2009)CrossRefGoogle Scholar
  17. 17.
    Gu, X., Su, Z., Huang, Y.: Simultaneous Expansions of Micrornas and Protein-Coding Genes by Gene/Genome Duplications in Early Vertebrates. J. Exp. Zool. B. Mol. Dev. Evol. 312B, 164–170 (2009)CrossRefGoogle Scholar
  18. 18.
    Heimberg, A.M., Sempere, L.F., Moy, V.N., Donoghue, P.C., Peterson, K.J.: Micrornas and the Advent of Vertebrate Morphological Complexity. Proc. Natl. Acad. Sci. USA 105, 2946–2950 (2008)CrossRefGoogle Scholar
  19. 19.
    Mandrioli, M.: A New Synthesis in Epigenetics: Towards a Unified Function of DNA Methylation from Invertebrates to Vertebrates. Cell Mol. Life Sci. 64, 2522–2524 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhixi Su
    • 1
  • Junfeng Xia
    • 1
  • Zhongming Zhao
    • 1
    • 2
    • 3
  1. 1.Department of Biomedical InformaticsVanderbilt University School of MedicineNashvilleUSA
  2. 2.Department of PsychiatryVanderbilt University School of MedicineNashvilleUSA
  3. 3.Department of Cancer BiologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations