Choice of Foliation and Spatial Coordinates

  • Éric Gourgoulhon
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 846)

Abstract

We discuss here the choice of spacetime coordinates, from a 3 + 1 point of view. This amounts to discuss first the choice of foliation, via the lapse function: the geodesic, maximal, harmonic, and 1+log slicings are presented here. In a second stage, we focus on of the propagation of the spatial coordinates from slice to slice, via the choice of the shift vector. We introduce the concepts of normal coordinates, minimal distortion and variants of it, Gamma freezing coordinates and Gamma drivers. Finally we discuss choices that fix fully the spatial coordinates on a given slice: spatial harmonic coordinates and Dirac gauge.

Keywords

Black Hole Neutron Star Gravitational Collapse Shift Vector Minimal Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Smarr, L., York, J.W.: Kinematical conditions in the construction of spacetime. Phys. Rev. D 17, 2529 (1978)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    York, J.W.: Kinematics and dynamics of general relativity. In: Smarr, L.L.(ed.) Sources of Gravitational Radiation. Cambridge University Press, Cambridge, 83, 83 (1979)Google Scholar
  3. 3.
    Alcubierre. M.: The status of numerical relativity in general relativity and gravitation. In: Florides, P., Nolan B., Ottewill A. (eds.) Proceedings of the 17th International Conference, Dublin, 18–23 July 2004. World Scientific (2005)Google Scholar
  4. 4.
    Baumgarte, T.W., Shapiro, S.L.: Numerical relativity and compact binaries. Phys. Rep. 376, 41 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Lehner, L.: Numerical relativity: a review. Class. Quantum Grav. 18, R25 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Alcubierre, M.: Introduction to 3+1 Numerical Relativity. Oxford University Press, Oxford (2008)MATHCrossRefGoogle Scholar
  7. 7.
    Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity. Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  8. 8.
    Choquet-Bruhat, Y.: General Relativity and Einstein’s Equations. Oxford University Press, New York (2009)Google Scholar
  9. 9.
    Nakamura, T., Oohara, K., Kojima, Y.: General relativistic collapse to black holes and gravitational waves from black holes. Prog. Theor. Phys. Suppl. 90, 1 (1987)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Shibata, M., Nakamura, T.: Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D 52, 5428 (1995)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Estabrook, F., Wahlquist, H., Christensen, S., DeWitt, B., Smarr, L., Tsiang, E.: Maximally Slicing a Black Hole. Phys. Rev. D 7, 2814 (1973)ADSCrossRefGoogle Scholar
  12. 12.
    Reinhart, B.L.: Maximal foliations of extended Schwarzschild space. J. Math. Phys. 14, 719 (1973)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Beig, R., O’Murchadha, N.: Late time behavior of the maximal slicing a the Schwarzschild black hole. Phys. Rev. D 57, 4728 (1998)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Beig, R.: The maximal slicing of a Schwarzschild black hole. Ann. Phys. (Leipzig) 11, 507 (2000)Google Scholar
  15. 15.
    Reimann, B., Brügmann, B.: Maximal slicing for puncture evolutions of Schwarzschild and Reissner-Nordström black holes. Phys. Rev. D 69, 044006 (2004)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Petrich, L.I., Shapiro, S.L, Teukolsky, S.A.: Oppenheimer-Snyder collapse with maximal time slicing and isotropic coordinates. Phys. Rev. D 31, 2459 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    Smarr, L., Čadež, A., DeWitt, B., Eppley, K.: Collision of two black holes: Theoretical framework. Phys. Rev. D 14, 002443 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    Smarr, L.: Gauge Conditions, Radiation Formulae and the Two Black Hole Collisions. In: Smarr, L.L. (ed.) Sources of Gravitational Radiation. Cambridge University Press, Cambridge, 245 (1979)Google Scholar
  19. 19.
    Nakamura, T.: General relativistic collapse of axially symmetric stars leading to the formation of rotating black holes. Prog. Theor. Phys. 65, 1876 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    Nakamura, T., Sato, H.: General relativistic colaapse of rotating supermassive stars. Prog. Theor. Phys. 66, 2038 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    Stark, R.F., Piran, T.: Gravitational-wave emission from rotating gravitational collapse. Phys. Rev. Lett. 55, 891 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    Evans C.R.: An approach for calculating axisymmetric gravitational collapse. In: Centrella, J. (ed) Dynamical spacetimes and numerical relativity. Cambridge University Press, Cambridge, p. 3 (1986)Google Scholar
  23. 23.
    Bardeen, J.M., Piran.: General relativistic axisymmetric rotating systems: coordinates and equations. Phys. Rep. 96, 206 (1983)Google Scholar
  24. 24.
    Grandclément, P., Bonazzola, S., Gourgoulhon, E., Marck, J.-.A.: A multi-domain spectral method for scalar and vectorial Poisson equations with non-compact sources. J. Comput. Phys. 170, 231 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Bonazzola, S., Gourgoulhon, E., Grandclément, P., Novak, J.: Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates. Phys. Rev. D 70, 104007 (2004)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Brügmann, B.: Binary black hole mergers in 3d numerical relativity. Int. J. Mod. Phys. D 8, 85 (1999)ADSMATHCrossRefGoogle Scholar
  27. 27.
    Shibata, M.: 3D numerical simulations of black hole formation using collisionless particles. Prog. Theor. Phys. 101, 251 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Shibata, M.: Fully general relativistic simulation of coalescing binary neutron stars: Preparatory tests. Phys. Rev. D 60, 104052 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Shibata, M., Uryu, K.: Simulation of merging binary neutron stars in full general relativity: \(\Upgamma=2\) case. Phys. Rev. D 61, 064001 (2000)Google Scholar
  30. 30.
    Shibata, M., Uryu, K.: Gravitational waves from the merger of binary neutron stars in a fully general relativistic simulation. Prog. Theor. Phys. 107, 265 (2002)ADSMATHCrossRefGoogle Scholar
  31. 31.
    Shibata, M., Taniguchi, K., Uryu, K.: Merger of binary neutron stars of unequal mass in full general relativity. Phys. Rev. D 68, 084020 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Shibata, M., Taniguchi, K., Uryu, K.: Merger of binary neutron stars with realistic equations of state in full general relativity. Phys. Rev. D 71, 084021 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    Shibata, M., Taniguchi, K.: Merger of binary neutron stars to a black hole: Disk mass, short gamma-ray bursts, and quasinormal mode ringing. Phys. Rev. D 73, 064027 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Shibata, M.: Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes. Phys. Rev. D 67, 024033 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Shibata, M.: Collapse of rotating supramassive neutron stars to black holes: fully general relativistic simulations. Astrophys. J. 595, 992 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Sekiguchi, Y., Shibata, M.: Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity: Numerical study for prompt black hole formation. Phys. Rev. D 71, 084013 (2005)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Shibata, M., Sekiguchi, Y.: Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities. Phys. Rev. D 71, 024014 (2005)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    De Donder, T.: La Gravifique einsteinienne. Gauthier-Villars, Paris (1921). A related downloadable article is http://www.numdam.org/item?id=AIHP_1930_1_2_77_0.
  39. 39.
    Fourès-Bruhat, Y. (Choquet-Bruhat, Y.): Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Mathematica 88, 141 (1952); available at http://fanfreluche.math.univ-tours.fr
  40. 40.
    Choquet-Bruhat, Y., Ruggeri, T.: Hyperbolicity of the 3+1 system of Einstein equations. Commun. Math. Phys. 89, 269 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  41. 41.
    Bona, C., Massó, J.: Harmonic synchronizations of spacetime. Phys. Rev. D 38, 2419 (1988)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Reula, O.A., Hyperbolic methods for Einstein’s equations. Living Rev. Relativity 1:3 (1998); http://www.livingreviews.org/lrr-1998-3
  43. 43.
    Smarr, L., York, J.W.: Radiation gauge in general relativity. Phys. Rev. D 17, 1945 (1978)MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Cook, G.B., Scheel, M.A.: Well-behaved harmonic time slices of a charged, rotating, boosted black hole. Phys. Rev. D 56, 4775 (1997)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Shibata, M., Nakamura, T.: Conformal time slicing condition in Three Dimensional numerical relativity. Prog. Theor. Phys. 88, 317 (1992)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Bona, C., Massó, J., Seidel, E., Stela, J.: New formalism for numerical relativity. Phys. Rev. Lett. 75, 600 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    Bernstein, D.H.: A Numerical Study of the Black Hole Plus Brill Wave Spacetime. PhD Thesis, Department of Physics, University of Illinois at Urbana-Champaign (1993)Google Scholar
  48. 48.
    Anninos, P., Massó, J.,Seidel, E.,Suen, W.-M., Towns, J.: Three-dimensional numerical relativity: The evolution of black holes. Phys. Rev. D 52:2059 (1995)Google Scholar
  49. 49.
    Bona, C., Massó, J., Seidel, E., Stela, J.: First order hyperbolic formalism for numerical relativity. Phys. Rev. D 56, 3405 (1997)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Piran, T.: Methods of Numerical Relativity. In: Deruelle, N., Piran T. (eds.) Rayonnement gravitationnel Gravitation Radiation. North Holland (1983)Google Scholar
  51. 51.
    Hannam, M., Husa, S., Ohme, F., Brügmann, B., Ó Murchadha, N.: Wormholes and trumpets: Schwarzschild spacetime for the moving-puncture generation. Phys. Rev. D 78, 064020 (2008)MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Baumgarte, T.W., Naculich, S.G.: Analytical representation of a black hole puncture solution. Phys. Rev. D 75, 067502 (2007)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Brown, J.D.: Probing the puncture for black hole simulations. Phys. Rev. D 80, 084042 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Alcubierre, M.: Appearance of coordinate shocks in hyperbolic formalisms of general relativity. Phys. Rev. D 55, 5981 (1997)MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    Font, J.A., Goodale, T., Iyer, S., Miller, M., Rezzolla, L., Seidel, E., Stergioulas, N., Suen, W.-.M., Tobias, M.: Three-dimensional numerical general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars. Phys. Rev. D 65, 084024 (2002)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    Baker, J.G., Centrella, J., Choi, D.-.I., Koppitz, M., van Meter, J.: Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    Baker, J.G., Centrella, J., Choi, D.-.I., Koppitz, M., van Meter, J.: Binary black hole merger dynamics and waveforms. Phys. Rev. D 73, 104002 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    van Meter, J.R., Baker, J.G., Koppitz, M., Choi, D.I.: How to move a black hole without excision: gauge conditions for the numerical evolution of a moving puncture. Phys. Rev. D 73, 124011 (2006)MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    Campanelli, M., Lousto, C.O., Marronetti, P., Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    Campanelli, M., Lousto, C.O., Zlochower, Y.: Last orbit of binary black holes. Phys. Rev. D 73, 061501(R) (2006)MathSciNetADSGoogle Scholar
  61. 61.
    Campanelli, M., Lousto, C.O., Zlochower, Y.: Spinning-black-hole binaries: The orbital hang-up. Phys. Rev. D(R) 74, 041501 (2006)MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    Campanelli, M., Lousto, C.O., Zlochower, Y.: Spin-orbit interactions in black-hole binaries. Phys. Rev. D 74, 084023 (2006)MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    Sperhake, U.: Binary black-hole evolutions of excision and puncture data. Phys. Rev. D 76, 104015 (2007)MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    Diener, P., Herrmann, F., Pollney, D., Schnetter, E., Seidel, E., Takahashi, R., Thornburg, J., Ventrella, J.: Accurate evolution of orbiting binary black holes. Phys. Rev. Lett. 96, 121101 (2006)ADSCrossRefGoogle Scholar
  65. 65.
    Brügmann, B., González, J.A., Hannam, M., Husa, S., Sperhake, U., Tichy, W.: Calibration of moving puncture simulations. Phys. Rev. D 77, 024027 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    Marronetti, P., Tichy, W., Brügmann, B., González, J., Hannam, M., Husa, S., Sperhake, U.: Binary black holes on a budget: simulations using workstations. Class. Quantum Grav. 24, S43 (2007)ADSMATHCrossRefGoogle Scholar
  67. 67.
    Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P.: Unequal mass binary black hole plunges and gravitational recoil. Class. Quantum Grav. 24, S33 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  68. 68.
    Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P., Matzner, R.A: Gravitational Recoil from Spinning Binary Black Hole Mergers. Astrophys. J. 661, 430 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    Sekiguchi, Y., Shibata, M.: Formation of black hole and accretion disk in a massive high-entropy stellar core collapse. Astrophys. J. 737, 6, (2011)Google Scholar
  70. 70.
    Baiotti, L., Hawke, I., Montero, P.J., Löffler, F., Rezzolla, L., Stergioulas, N., Font, J.A., Seidel E.: Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole: Phys. Rev. D 71. 024035 (2005)Google Scholar
  71. 71.
    Baiotti, L., Hawke, I., Rezzolla, L., Schnetter, E.: Gravitational-wave emission from rotating gravitational collapse in Three Dimensions. , (2005)Google Scholar
  72. 72.
    Baiotti, L., Rezzolla, L.: Challenging the paradigm of singularity excision in gravitational collapse. Phys. Rev. Lett. 97, 141101 (2006)MathSciNetADSCrossRefGoogle Scholar
  73. 73.
    Baiotti, L., Giacomazzo, B., Rezzolla, L.: Accurate evolutions of inspiralling neutron-star binaries: Prompt and delayed collapse to a black hole. Phys. Rev. D 78, 084033 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    Giacomazzo, B., Rezzolla, L., Baioti, L.: Accurate evolutions of inspiralling and magnetized neutron stars: Equal-mass binaries. Phys. Rev. D 83, 044014 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    Kiuchi, K., Sekiguchi, Y., Shibata, M., Taniguchi, K.: Long-term general relativistic simulation of binary neutron stars collapsing to a black hole. Phys. Rev. D 80, 064037 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    Kyutoku, K., Shibata, M., Taniguchi, K.: Gravitational waves from nonspinning black hole-neutron star binaries: Dependence on equations of state. Phys. Rev. D 82, 044049 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    Bardeen, J.M.: Gauge and radiation conditions in numerical relativity. In: Deruelle, N., Piran, T. (eds.) Rayonnement gravitationnel Gravitation Radiation. North Holland, Amsterdam, p. 433 (1983)Google Scholar
  78. 78.
    Baumgarte, T.W., Shapiro, S.L.: Numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007 (1999)MathSciNetADSCrossRefGoogle Scholar
  79. 79.
    Alcubierre, M., Benger, W., Brügmann, B., Lanfermann, G., Nerger, L., Seidel, E., Takahashi, R.: 3D Grazing collision of two black holes. Phys. Rev. Lett. 87, 271103 (2001)MathSciNetADSCrossRefGoogle Scholar
  80. 80.
    Jantzen, R.T., York, J.W.: New minimal distortion shift gauge. Phys. Rev. D 73, 104008 (2006)MathSciNetADSCrossRefGoogle Scholar
  81. 81.
    Nakamura, T.: 3D Numerical Relativity. In: Sasaki, M. (ed.) Relativistic Cosmology, Proceedings of the 8th Nishinomiya-Yukawa Memorial Symposium. Universal Academy Press, Tokyo, p. 155 (1994)Google Scholar
  82. 82.
    Oohara, K., Nakamura, T., Shibata, M.: A way to 3D numerical relativity. Prog. Theor. Phys. Suppl. 128, 183 (1997)MathSciNetADSCrossRefGoogle Scholar
  83. 83.
    Shibata, M.: Fully general relativistic simulation of merging binary clusters—spatial gauge condition. Prog. Theor. Phys. 101, 1199 (1999)ADSCrossRefGoogle Scholar
  84. 84.
    Shibata, M., Baumgarte, T.W., Shapiro, S.L.: Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity. Phys. Rev. D 61, 044012 (2000)ADSCrossRefGoogle Scholar
  85. 85.
    Shibata, M., Baumgarte, T.W., Shapiro, S.L.: The bar-mode instability in differentially rotating neutron stars: simulations in full general relativity. Astrophys. J. 542, 453 (2000)ADSCrossRefGoogle Scholar
  86. 86.
    Alcubierre, M., Brügmann, B.: Simple excision of a black hole in 3+1 numerical relativity. Phys. Rev. D 63, 104006 (2001)MathSciNetADSCrossRefGoogle Scholar
  87. 87.
    Alcubierre, M., Brügmann, B., Diener, P., Koppitz, M., Pollney, D., Seidel, E., Takahashi, R.: Gauge conditions for long-term numerical black hole evolutions without excision. Phys. Rev. D 67, 084023 (2003)MathSciNetADSCrossRefGoogle Scholar
  88. 88.
    Lindblom, L., Scheel, M.A.: Dynamical gauge conditions for the Einstein evolution equations. Phys. Rev. D 67, 124005 (2003)MathSciNetADSCrossRefGoogle Scholar
  89. 89.
    Bona, C., Lehner, L., Palenzuela-Luque, C.: Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations. Phys. Rev. D 72, 104009 (2005)MathSciNetADSCrossRefGoogle Scholar
  90. 90.
    Alcubierre, M., Brügmann, B., Pollney, D., Seidel, E., Takahashi, R.: Black hole excision for dynamic black holes. Phys. Rev. D 64, 061501 (2001)ADSCrossRefGoogle Scholar
  91. 91.
    Brügmann, B., Tichy, W., Jansen, N.: Numerical simulation of orbiting black holes. Phys. Rev. Lett. 92, 211101 (2004)ADSCrossRefGoogle Scholar
  92. 92.
    Alic, D., Rezzolla, L., Hinder, I., Mösta, P.: Dynamical damping terms for symmetry-seeking shift conditions. Class. Quantum Grav. 27, 245023 (2010)Google Scholar
  93. 93.
    Sekiguchi, Y., Kiuchi, K., Kyutoku, K., Shibata, M.: Gravitational waves and neutrino emission from the merger of binary neutron stars. Phys. Rev. Lett. 107, 051102 (2011)Google Scholar
  94. 94.
    Čadež, A.: Some remarks on the two-body-problem in geometrodynamics: Ann. Phys. N.Y. 91, 58 (1975)ADSCrossRefGoogle Scholar
  95. 95.
    Andersson, L., Moncrief, V.: Elliptic-Hyperbolic Systems and the Einstein Equations. Ann. Henri Poincaré 4, 1 (2003)MathSciNetADSMATHGoogle Scholar
  96. 96.
    Alcubierre, M., Corichi, A., González, J.A., Núnez, D., Reimann, B., Salgado, M.: Generalized harmonic spatial coordinates and hyperbolic shift conditions. Phys. Rev. D 72, 124018 (2005)MathSciNetADSCrossRefGoogle Scholar
  97. 97.
    Dirac, P.A.M.: Fixation of coordinates in the Hamiltonian theory of gravitation. Phys. Rev. 114, 924 (1959)MathSciNetADSMATHCrossRefGoogle Scholar
  98. 98.
    Cordero-Carrión, I., Cerdá-Durán, P., Dimmelmeier, H., Jaramillo, J.L, Novak, J., Gourgoulhon, E.: Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue. Phys. Rev. D 79, 024017 (2009)MathSciNetADSCrossRefGoogle Scholar
  99. 99.
    Cordero-Carrión, I., Cerdá-Durán, P., Ibánez, J.M.: Dynamical spacetimes and gravitational radiation in a Fully Constrained Formulation. J. Phys.: Conf. Ser. 228, 012055 (2010)ADSCrossRefGoogle Scholar
  100. 100.
    Cordero-Carrión, I., Ibánez, J.M., Gourgoulhon, E., Jaramillo, J.L., Novak, J.: Mathematical issues in a fully-constrained formulation of Einstein equations. Phys. Rev. D 77, 084007 (2008)MathSciNetADSCrossRefGoogle Scholar
  101. 101.
    Cordero-Carrión, I., Cerdá-Durán. P., Ibánez, J.M.: Gravitational waves in dynamical spacetimes with matter content in the Fully Constrained Formulation. preprint arXiv:1108.0571.Google Scholar
  102. 102.
    Shibata, M., Uryu, K., Friedman, J.L.: Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits: Phys. Rev. D 70. 044044 (2004); errata in Phys. Rev. D 70:129901(E) (2004)Google Scholar
  103. 103.
    Uryu, K., Limousin, F., Friedman, J.L., Gourgoulhon, E., Shibata, M.: Binary neutron stars: equilibrium models beyond spatial conformal flatness. Phys. Rev. Lett. 97, 171101 (2006)ADSCrossRefGoogle Scholar
  104. 104.
    Uryu, K., Limousin, F., Friedman, J.L., Gourgoulhon, E., Shibata, M.: Nonconformally flat initial data for binary compact objects. Phys. Rev. D 80, 124004 (2009)ADSCrossRefGoogle Scholar
  105. 105.
    Lin, L.-.M., Novak, J.: Rotating star initial data for a constrained scheme in numerical relativity. Class. Quantum Grav. 23, 4545 (2006)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Éric Gourgoulhon
    • 1
  1. 1.Lab. Univers et Théories (LUTH) UMR 8102 du CNRS, Observatoire de ParisUniversité Paris DiderotMeudonFrance

Personalised recommendations