Isolation of Pigment-Producing Bacteria and Characterization of the Extracted Pigments

  • Wan Azlina Ahmad
  • Wan Yunus Wan Ahmad
  • Zainul Akmar Zakaria
  • Nur Zulaikha Yusof
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Bacteria produce pigments for various reasons and it plays an important role. Some bacteria such as cyanobacteria have phycobilin pigments to carry out photosynthesis. Other example for pigment-producing bacterial strains includes Serratia marcescens that produces prodigiosin, Streptomyces coelicolor (prodigiosin and actinorhodin), Chromobacterium violaceum (violacein) and Thialkalivibrio versutus (natronochrome and chloronatronochrome). These bacteria can be isolated/cultured/purified from various environmental sources such as water bodies, soil, on plant, in insects and in man or animal. Various growth mediums can be used to isolate different types of bacteria. However, due to the high cost of using synthetic medium, there is a need to develop new low cost process for the production of pigments as well as during the isolation procedure. The use of agro-industrial residues for example, would provide a profitable means of reducing substrate cost. Pigment produced by the bacteria can be isolated using solvent extraction. These pigments can be further purified and characterized for physical and chemical characteristics using various instrumental-based analytical techniques such as TLC, UV–vis Spectroscopy, FTIR, ESI–MS, NMR HPLC and Gel Permeation Chromatography.


Pigment Bacteria Isolation Characterization NMR, HPLC Extraction Medium 


  1. Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa TV, Barardi CRM, Simões CMO (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum Memórias do Instituto Oswaldo Cruz 98:843–848CrossRefGoogle Scholar
  2. August PR, Grossman TH, Minor C, Draper MP, MacNeil IA, Pemberton JM, Call KM, Holt D, Osburne MS (2000) Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. JMMB 2(4):513–519Google Scholar
  3. Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (1992) The prokaryotes, 2nd edn. Springler-Verlag, BerlinGoogle Scholar
  4. Barja JL, Lemos ML, Toranzo EA (1989) Purification and characterization of an antibacterial substance produced by a parine Alteromonas Species. Antimicrob Agents Chemother 33(10):1674–1679Google Scholar
  5. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the Family. Int J Syst Evol Microbiol 52(3):1049–1070CrossRefGoogle Scholar
  6. Carepo MSP, Azevedo JSN, Porto JIR, Bentes-Souza AR, Batista JS, Silva ALC, Schneider MPC (2004) Identification of Chromobacterium violaceum genes with potential biotechnological application in environmental detoxification. Genet Mol Res 3:181–194Google Scholar
  7. Chernin LS, Winson MK, Thompson JM, Haran S, Bycroft BW, Chet I, Williams P, Stewart GSAB (1998) Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 180:4435–4441Google Scholar
  8. De Souza AO, Aily DCG, Sato DN, Duran N (1999) Atividade da violaceina in vitro sobre o Mycobacterium turbeculosis H37RA, Rev. Inst. Adolfo Lutz. 58:59–62Google Scholar
  9. DeMoss RD, Evans NR (1959) Physiological aspects of violacein biosynthesis in nonproliferating cells. J Bacteriol 78:583–586Google Scholar
  10. Eaton AD, Franson MAH (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, New YorkGoogle Scholar
  11. Faramarzi MA, Stagars M, Pensini E, Krebs W, Brandl H (2004) Metal solubilization from metal-Containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113:321–326CrossRefGoogle Scholar
  12. Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91CrossRefGoogle Scholar
  13. Gillis M and Logan N A (2005) Genus IV. Chromobacterium Bergonzini 1881, 153AL. In:Brenner DJ, Krieg N ,Staley JT, Garrity GM(eds.). Bergey’s manual of systematic bacteriology, 2nd edn, vol 2, part C. Springer,New York, pp 824–827Google Scholar
  14. Hoshino T, Kondo T, Uchiyama T, Ogasawara N (1987) Biosynthesis of violacein: A novel rearrangement in tryptophan metabolism with 1, 2-shift of the indole Ring. Agr Chem Biotechno 51:965–968CrossRefGoogle Scholar
  15. Hugo CJ, Segers P, Hoste B, Vancanneyt M, Kersters K (2003) Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53:771–777CrossRefGoogle Scholar
  16. Kämpfer P, Dreyer U, Neef A, Dott W, Busse H-J (2003) Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97CrossRefGoogle Scholar
  17. Kim KK, Bae H-S, Schumann P, Lee S-T (2005) Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55:133–138CrossRefGoogle Scholar
  18. Konzen M, Marco DD, Cordova CAS, Vieira TO, Antonio RV, Creczynski-Pasa TB (2006) Antioxidant properties of violacein: ossible relation on its biological function. J Bioorg Med Chem 14:8307–8313CrossRefGoogle Scholar
  19. Lambert JB, Mazzola EP (2004) Nuclear magnetic resonance spectroscopy. An introduction to Principles, applications, and experimental methods. Pearson Education, USA, pp 75–76Google Scholar
  20. Leon LL, Miranda CC, De Souza AO, Durán N (2001) Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 48:449CrossRefGoogle Scholar
  21. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, Kobayashi K, Ezaki T (2003) Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 26:523–528CrossRefGoogle Scholar
  22. Lu Y, Wang L, Xue Y, Zhang C, Xing XH, Lou K, Zhang Z, Li Y, Zhang G, Bi J, Su Z (2009) Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xnjiang, China. Biochem Eng J 43:135–141CrossRefGoogle Scholar
  23. MacFaddin J (1980) Biochemical tests for identification of medical bacteria, 2nd edn. Williams and Wilkins, BaltimoreGoogle Scholar
  24. Martinko JM, Madigan MT (2006) Brock: biology of microorganism, 11th edn. Pearson Education International, USAGoogle Scholar
  25. Melo PS, Maria SS, Vidal BC, Haun M, Durán N (2000) In Vitro Cell Dev Biol Anim 36: 539–543Google Scholar
  26. Michaels R, Corpe WA (1965) Cyanide formation by Chromobacterium violaceum. J Bacteriol 89:106–112Google Scholar
  27. Min-jung S, Jungdon B, Due-Sil L, Chang-Ho K, Jun-Seok K, Seung-Wook K, Suk-In H (2006) Purification and characterization of prodigiosin produced by integrated bioreactor from Serratia sp. KH-95. JBB 101:157-161.Google Scholar
  28. Mohan J (2007) Organic spectroscopy. Principles and Applications. Alpha Science International Ltd., U.KGoogle Scholar
  29. Nakamura Y, Sawada T, Morita Y, Tamiya E (2002) Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem Eng J 12:73–80CrossRefGoogle Scholar
  30. Nakamura Y, Asada C, Sawada T (2003) Production of antibacterial violet pigment by psychrotropic bacterium RT102 Strain. Biotechnol Bioprocess Eng 8:37–40CrossRefGoogle Scholar
  31. Singh R, Jain A, Panwar S, Gupta D, Khare SK (2005) Antimicrobial activity of some natural dyes. Dyes and Pigments 66: 99-102Google Scholar
  32. Rustom SM, Valiollah H, Alka MP, Prafulla JD (1990) Isolation and characterization of Serratia marcescens mutants defective in prodigiosin biosynthesis.Curr Microbio 20(2):95–103CrossRefGoogle Scholar
  33. Shen F-T, Kämpfer P, Young C–C, Lai W-A, Arun AB (2005) Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55:1301–1304CrossRefGoogle Scholar
  34. Sneath PH (1994) Chromobacterium Bergonzini 1881. In: Gibbons RE(ed),Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore,p 354Google Scholar
  35. Song C, Makoto S, Osamu J, Shinji O, Yasunori N, Akihiro Y (2000) High production of prodigiosin by Serratia marcescens grown on ethanol. Biotechnol Lett 22(22):1761–1765CrossRefGoogle Scholar
  36. Steinbüchel A, Debzi EM, Marchessault RH, Timm A (1993) Synthesis and production of poly (3-hydroxyvaleric acid) homopolyester by Chromobacterium violaceum. Appl Microbiol Biotechnol 39:443–449CrossRefGoogle Scholar
  37. Ueda H, Nakajima H, Hori Y, Goto T , Okuhara M (1994) FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum nº. 968. I. taxonomy, fermentation, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 47: 301-310Google Scholar
  38. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B (1994) New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831CrossRefGoogle Scholar
  39. Vasconcelos ATR, Almeida DF, Hungria M, Guimarães CT, Antônio RV, Almeida FC, Almeida LGP, Almeida R, Alves-Gomes JA, Andrade EM, Araripe J, Araujo MFF, Astolfi-Filho S, Azevedo V, Baptista AJ, Bataus LAM, Baptista JS, Belo A, van den Berg C, Bogo M, Bonatto S, Bordignon J, Brigido MM, Brito CA, Brocchi M, Burity HA, Camargo AA, Cardoso DDP, Carneiro NP, Carraro DM, Carvalho CMB, Cascardo JCM, Cavada BS, Chueire LMO, Creczynski-Pasa TB, Cunha Junior NC, Fagundes N, Falcão CL, Fantinatti F, Farias IP, Felipe MSS, Ferrari LP, Ferro JA, Ferro MIT, Franco GR, Freitas NSA, Furlan LR, Gazzinelli RT, Gomes EA, Gonçalves PR, Grangeiro TB, Grattapaglia D, Grisard EC, Hanna ES, Jardim SN, Laurino J, Leoi LCT, Lima LFA, Loureiro MF, Lyra MCCP, Madeira HMF, Manfio GP, Maranhão AQ, Martins WS, Mauro SMZ, Medeiros SRB, Meissner RV, Moreira MAM, Nascimento FF, Nicolas MF, Oliveria JG, Oliveira SC, Paixão RFC, Parente JA, Pedrosa FO, Pena SDJ, Pereira JO, Pereira M, Pinto LSRC, Pinto LS, Porto JIR, Potrich DP, Ramalho Neto CE, Reis AMM, Rigo LU, Rondinelli E, Santos EBP, Santos FR, Schneider MPC, Seuanez HN, Silva AMR, Silva ALC, Silva DW, Silva R, Simões IC, Simon D, Soares CMA, Soares RBA, Souza EM, Souza KRL, Souza RC, Steffens MBR, Steindel M, Teixeira SR, Urmenyi T, Vettore A, Wassem R, Zaha A, Simpson AJG (2003) The complete genome of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci USA 100:11660–11665CrossRefGoogle Scholar
  40. Venter H (1987) Purification and characterization of a heat stable metalloprotease from a Chryseobacterium of dairy origin. MSc thesis. University of Orange Free State, Bloemfontein, South Africa.Google Scholar
  41. Wang H, Jiang P, Lu Y, Ruan Z, Jiang R, Xing XH, Lou K, Wei D (2009) Optimization of culture conditions for violacein production by a new strain of Duganella sp. B2. Biochem Eng J 44:119–124CrossRefGoogle Scholar
  42. Wei YH, Yu WJ, Chen WC (2005) Enhanced undecylprodigiosin production from Serratia marcescens SS-1 by medium formulation and amino-acid supplementation. J Biosci and Bioeng 100:466–471CrossRefGoogle Scholar
  43. Yada S, Wang Y, Zou Y, Nagasaki K, Hosokawa K, Osaka I, Arakawa R, Enomoto K (2007) Isolation and characterization of two groups of novel marine bacteria producing violacein. Mar Biotechnol 10:128–132CrossRefGoogle Scholar
  44. Yamaguchi S, Yokoe M (2000) A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66:3337–3343CrossRefGoogle Scholar
  45. Young CC, Kämpfer P, Shen FT, Lai WA, Arun AB (2005) Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca Sativa L. (garden lettuce). Int J Syst Evol Microbiol 55:423–426CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Wan Azlina Ahmad
    • 1
  • Wan Yunus Wan Ahmad
    • 2
  • Zainul Akmar Zakaria
    • 3
  • Nur Zulaikha Yusof
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Teknologi MalaysiaSkudai JohorMalaysia
  2. 2.Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia
  3. 3.Institute of Bioproduct DevelopmentUniversiti Teknologi MalaysiaSkudai JohorMalaysia

Personalised recommendations