Pleasing Shapes for Topological Objects

  • John M. SullivanEmail author
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 18)


Topology is the study of deformable shapes; to draw a picture of a topological object one must choose a particular geometric shape. One strategy is to minimize a geometric energy, of the type that also arises in many physical situations. The energy minimizers or optimal shapes are also often aesthetically pleasing. This article first appeared in an Italian translation [Sullivan, Affascinanti forme per oggetti topologici, 145–156 (2011)].


Soap Film Round Sphere Double Bubble Topological Sphere Transparent Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Almgren, F.J. Jr., Sullivan, M.: Visualization of soap bubble geometries. Leonardo 24(3/4), 267–271 (1992)CrossRefGoogle Scholar
  2. 2.
    Brakke, K.A.: The surface evolver. Exp. Math. 1(2), 141–165 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cantarella, J., Kusner, R.B., Sullivan, J.M.: On the minimum ropelength of knots and links. Inventiones Math. 150(2), 257–286 (2002), arXiv:math.GT/0103224MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cantarella, J., Fu, J., Kusner, R., Sullivan, J.M., Wrinkle, N.: Criticality for the Gehring link problem. Geom. Topology 10, 2055–2115 (2006), Scholar
  5. 5.
    Emmer, M. (ed.): The Visual Mind: Art and Mathematics. MIT, Cambridge (1993)Google Scholar
  6. 6.
    Francis, G., Morin, B.: Arnold Shapiro’s eversion of the sphere. Math. Intell. 2, 200–203 (1979)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Francis, G., Sullivan, J.M., Kusner, R.B., Brakke, K.A., Hartman, C., Chappell, G.: The Minimax Sphere Eversion. In: Hege, H.-C., Polthier, K.(eds.) Visualization and Mathematics, pp. 3–20. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Gunn, C., Sullivan, J.M.: The Borromean rings: a new logo for the IMU. In: Polthier, K., Aigner, M., Apostol, T.M., Emmer, M., Hege, C.-H., Weinberg, U. (eds.) MathFilm Festival. Springer, Berlin (2008); 5-minute videoGoogle Scholar
  9. 9.
    Gunn, C., Sullivan, J.M.: The Borromean rings: a video about the new IMU logo. Bridges Proceedings (Leeuwarden), pp. 63–70 (2008)Google Scholar
  10. 10.
    Karcher, H., Pinkall, U.: Die Boysche Fläche in Oberwolfach. Mitteilungen der DMV 97(1), 45–47 (1997)Google Scholar
  11. 11.
    Kusner, R., Sullivan, J.M.: Comparing the Weaire-Phelan equal-volume foam to Kelvin’s foam. Forma 11(3), 233–242 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Morgan, F.: Proof of the double bubble conjecture. Am. Math. Monthly 108(3), 193–205 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Pinkall, U., Sterling, I.: Willmore surfaces. Math. Intell. 9(2), 38–43 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Sullivan, J.M.: Generating and rendering four-dimensional polytopes. Math. J. 1(3), 76–85 (1991)Google Scholar
  15. 15.
    Sullivan, J.M.: The geometry of bubbles and foams. In: Rivier, N., Sadoc, J.-F. (eds.) Foams and Emulsions. NATO Advanced Science Institute Series E: Applied Sciences, vol. 354, pp. 379–402. Kluwer, Dordrecht (1998)Google Scholar
  16. 16.
    Sullivan, J.M.: The Optiverse and other sphere eversions. Bridges Proceedings (Winfield), pp. 265–274 (1999), arXiv:math.GT/9905020Google Scholar
  17. 17.
    Sullivan, J.M.: Minimal flowers. Bridges Proceedings (Pécs), pp. 395–398 (2010)Google Scholar
  18. 18.
    Sullivan, J.M.: Affascinanti forme per oggetti topologici. In: Emmer, M. (ed.) Matematica e cultura 2011, pp. 145–156. Springer, Italia (2011)CrossRefGoogle Scholar
  19. 19.
    Sullivan, J.M., Morgan, F. (eds.): Open problems in soap bubble geometry. Int. J. Math. 7(6), 833–842 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Sullivan, J.M., Francis, G., Levy, S.: The Optiverse. In: Hege, H.-C., Polthier, K. (eds.) VideoMath Festival at ICM’98, p. 16. Springer, Berlin (1998); plus 7-minute video, Scholar
  21. 21.
    Thompson, W. (Lord Kelvin), On the division of space with minimum partitional area. Philos. Mag. 24, 503–514 (1887), also published in Acta Math. 11, 121–134Google Scholar
  22. 22.
    Weaire, D. (ed.): The Kelvin Problem. Taylor & Francis, London (1997)Google Scholar
  23. 23.
    Weaire, D., Phelan, R.: A counter-example to Kelvin’s conjecture on minimal surfaces. Phil. Mag. Lett. 69(2), 107–110 (1994)CrossRefGoogle Scholar
  24. 24.
    Willmore, T.J.: A survey on Willmore immersions. In: Geometry and Topology of Submanifolds, IV (Leuven, 1991), pp. 11–16. World Scientific, Singapore (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Technische Universität BerlinBerlinGermany

Personalised recommendations