Influencing Densification of PM Gears

Conference paper

Abstract

The powder metallurgical (PM) production offers the possibility for the efficient use of resources by near-netshape production. Due to remaining porosity after sintering, highly loaded PM gears have to be densified at the surface. In order to receive a satisfying surface strength, the densified layer has to be sufficiently deep. The depth of the densified layer is mainly influenced by the material stock of the blank and can be optimized by a variation of the stock along the tooth profile. Today, the material stock has to be designed in an iterative and time-consuming process.

This paper shows a method to predict the material stock required for a certain densified layer without the necessity of numerous trials. The predictability of the densified layer will accelerate the development of pressing tools.

By means of Finite Element Analysis (FEA) a process investigation of rolling of PM gears regarding geometrical and kinematical parameters is performed for one gear geometry. This FEA has been verified for displaying the densification of PM gears in a rolling process. The results show a major correlation of sliding velocity of tool and workpiece with the densification depth. Based on this correlation a material stock is designed in order to receive a nearly equidistant densified layer. Furthermore, the planned derivation of a model to predict a common rolling surface-defect is presented.

Keywords

Surface Densification Tooth Root Finite Element Analysis Model Tooth Contact Rolling Contact Fatigue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brecher, C.; Gorgels, C.; Hesse, J.; Hellmann, M.: Dynamic transmission error measurements of a drive train Prod. Eng. Res. Devel. (2011)Google Scholar
  2. 2.
    Kotthoff, G.: Neue Verfahren zur Tragfähigkeitssteigerung von gesinterten Zahnrädern. Dissertation RWTH Aachen 2003Google Scholar
  3. 3.
    Beiss, P.: Mechanische Eigenschaften von Sinterstählen, Tagungsband zum Symposium für Pulvermetallurgie: Material- Prozess-Anwendung Hagen, 27.–28. November 2003, Hagen: ISL Verlag, 2003Google Scholar
  4. 4.
    Klocke, F.; Gorgels, C.; Gräser, E.; Kauffmann, P.; Strehmel, P.; Hirsch, M.: Solutions in PM Gear Rolling. In: Proceedings of PM2010 World CongressGoogle Scholar
  5. 5.
    Klocke, F.; Gorgels, C.; Kauffmann, P.: Rollability of Case-Hardening PM-Steel; In: Conference on Powder Metallurgy and Particulate Materials, PowderMet 2009 – 28.06.2009-01.07.2009, Las Vegas – Advances in Powder Metallurgy & Particulate Material, Hrsg.: Jesberger, T.; Mashl, S.; MPIF Princeton; Princeton 2009, ISBN 978-0-9819496-1-1, S. 59–66Google Scholar
  6. 6.
    Neugebauer, R.; Klug, D.; Hellfritzsch, U.: Description of the interactions during gear rolling as a basis for a method for the prognosis of the attainable quality parameters. Prod. Eng. Res. Devel. (2007) pp.1:253–257Google Scholar
  7. 7.
    Neugebauer, R.; Putz, M.; Hellfritzsch, U.: Improved Process Design and Quality for Gear Manufacturing with Flat and Round Rolling. In CIRP Annals – Manufacturing Technology (2007)Google Scholar
  8. 8.
    Klocke, F.; Gorgels, C.; Kauffmann, P.: Plasticity of PM Materials. In: EURO PM 2008 – Proceedings Vol. 3, ISBN:9781899072057Google Scholar
  9. 9.
    Klocke, F.; Gorgels, C.; Kauffmann, P.: Gear-Rolling Study; In: Conference on Powder Metallurgy and Particulate Materials, PowderMet 2009 – 28.06.2009-01.07.2009, Las Vegas – Advances in Powder Metallurgy & Particulate MaterialsGoogle Scholar
  10. 10.
    Danninger H.; Altena H.: Wärmebehandlung von Sinterstahl-Präzisionsteilen, Part 1: Basic considerations. BHM Berg- und Hüttenmännische Monatshefte 150 (2005) 3, pp. 77–81Google Scholar
  11. 11.
    Altena H.; Danninger H.: Wärmebehandlung von Sinterstahl-Präzisionsteilen, Part 2: Prozess und Anlagentechnik. BHM Berg- und Hüttenmännische Monatshefte 150 (2005) 5, pp. 170–175Google Scholar
  12. 12.
    Klocke, F.; Schröder, T.; Kauffmann, P.:: Fundamental Study of Surface Densification of PM Gears by Rolling using FE Analysis. In Production Engineering. Research and Development, 2007Google Scholar
  13. 13.
    Klocke, F.; Gorgels, C.; Kauffmann, P.: Challenges of Surface Densification of PM Gears by Rolling; In: Advances in Powder Metallurgy and Particulate Materials – Proceedings of the 2008 World Congress on Powder Metallurgy & Particulate Materials, Hrsg.: Federation, M.; Lawcock, R.; Lawley, A.; McGeehan, P.; 1. Aufl. , MPIF Princeton 2008, ISBN 978-0-97934488-9-1, S. 167–191Google Scholar
  14. 14.
    Hertz, H.: Über die Berührung elastischer Körper. Leipzig 1895Google Scholar
  15. 15.
    Norm EN ISO 2639 (April 2003) Bestimmung und Prüfung der Einsatzhärtetiefe.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • F. Klocke
    • 1
  • C. Gorgels
    • 1
  • P. Kauffmann
    • 2
  • E. Gräser
    1. 1.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen UniversityAachenGermany
    2. 2.Bonfiglioli Vectron GmbH, Bonfiglioli Innovation CentreKrefeldGermany

    Personalised recommendations