Flexible Manufacturing of Lightweight Frame Structures with an Integrated Process Chain

Conference paper

Abstract

The Transregional Collaborative Research Center TR10 “Integration of forming, cutting and joining for the flexible production of lightweight space frame structures”, set up by the German Research Foundation (DFG) at Technische Universität Dortmund, Karlsruhe Institute of Technology and Technische Universität München, focuses its research on small batch production systems for lightweight frame structures. The ambitions aim of this research center is to create a scientific basis for the development of innovative manufacturing processes like curved profile extrusion and design methods for flexible, integrated process chains.

In the first funding period from 2003 to 2006, the general production processes and simulations were developed. In the second period from 2007 to 2010, the processes were integrated in a complete real process chain with extrusion processes, handling robots, cutting and different joining machines. Also, process simulations were integrated in a parallel chain. The whole research center presently comprises 19 individual projects. In the present paper, an outline of some in cooperatively determined results of the last funding period and an overview of the used process technology are presented. Furthermore, an outlook is given on the major aims of the next funding period.

Keywords

Friction Stir Welding Friction Stir Welding Process Chain Extrusion Process Parallel Kinematic Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This paper is based on investigations of the Collaborative Research Center SFB/Transregio 10 which is kindly supported by the German Research Foundation (DFG). The research center consists of 19 projects at the Technische Universität Dortmund, the Karlsruhe Institute of Technology and the Technische Universität München. The paper is based on the close co-operation of the involved institutes. The institutes are the Institute of Forming Technology and Lightweight Construction (IUL), the Institute of Machining Technology (ISF), the Institute of Production Science (wbk), the Institute for Applied Materials – Materials Science and Engineering (IAM-WK), the Institute for Machine Tools and Industrial Management (iwb) and the Institute of Lightweight Structures (LLB).

References

  1. 1.
    Kleiner, M.: Verfahren und Vorrichtung zur Herstellung von gekrümmten Werkstücken. Europäische Patentschrift, EP 0 706 843 B1, Priorität 17.08.1994, Erteilung 20.01.1999Google Scholar
  2. 2.
    Arendes, D.: Direkte Fertigung gerundeter Aluminiumprofile beim Strangpressen. Dr.-Ing. Thesis, University of Dortmund, Shaker Verlag, 1999Google Scholar
  3. 3.
    Wagner, A.; Kidratschky, H.: Verfahren zur Herstellung von Verbundprofilen sowie Vorrichtungen zur dessen Durchführung. Deutsche Patentschrift, DE 24 14 178, Anmeldung 23.03.1974Google Scholar
  4. 4.
    Schikorra, M.; Tekkaya, A. E.; Kleiner, M.: Experimental investigations of embedding high strength reinforcements in extrusion profils. CIRP Annals – Manufacturing Technology, Vol. 57, Issues 1, 2008, pp. 313–316Google Scholar
  5. 5.
    Kleiner, M.; Tekkaya, A. E.; Becker, D.; Pietzka, D.; Schikorra, M.: Combination of curved profile extrusion and composite extrusion for increased lightweight properties. Production Engineering Research and Development, Vol. 3, Number 1, Springer Verlag, pp. 63–68, 2009Google Scholar
  6. 6.
    Munzinger, C.; Fleischer, J.; Stengel, G.; Schneider, M.: Accuracy of Fling Cutting Device. Advanced Materials Research Vol. 43 (2008), Trans Tech Publications, Switzerland, pp. 23–36Google Scholar
  7. 7.
    Fleischer, J.; Schmidt-Ewig, J. P.: Innovative Machine Kinematics for Combined Handling and Machining of Three-Dimensional Curved Lightweight Extrusion Structures. Annals of the CIRP 54 (2005), pp. 317–320Google Scholar
  8. 8.
    Biermann, D.; Weinert, K.; Zabel, A.; Engbert, T.; Rautenberg, J.: Machining of Lightweight Frame Components. Advanced Materials Research Vol. 43 (2008), Trans Tech Publications, Switzerland, pp. 37–46Google Scholar
  9. 9.
    Weinert, K.; Hammer, N.; Rautenberg, J.: Analysis and Simulation of Cutting Technologies for Lightweight Frame Components. Advanced Materials Research Vol. 10 (2006), Trans Tech Publications, Switzerland, pp. 53–64Google Scholar
  10. 10.
    Mehnen, J.; Rautenberg, J.; Hagedorn, M.; Schaefer, J.: Fertigung von Leichtbaustrukturen. Spanende Fertigung, 4. Ausgabe, Hrsg. K. Weinert, Vulkan Verlag, Essen, 2005, pp. 403–410Google Scholar
  11. 11.
    Fleischer, J.; Schmidt-Ewig, J. P.: Accuracy Improvement of a Machine Kinematics for the Product Flexible Machining of Curved Extrusion Profiles. Advanced Materials Research Vol. 43 (2008), Trans Tech Publications, Switzerland, pp. 135–144Google Scholar
  12. 12.
    Fleischer, J.; Ruch, D.: Flexibles Spannen räumlich gekrümmter Profile – Form- und konturflexibles Spannen räumlich gekrümmter Aluminium-Strangpressprofile. wt-Online, 09, pp. 712–716, 2005Google Scholar
  13. 13.
    Fleischer, J.; Schmidt-Ewig, J. P.: Innovative Machine Kinematics for Combined Handling and Machining of Three-Dimensional Curved Lightweight Extrusion Structures. Annals of the CIRP, 54, pp. 317–320, 2005CrossRefGoogle Scholar
  14. 14.
    Trautmann, A.; Zaeh, M. F.: Laser Bifocal Hybrid Welding of Aluminum. Advanced Materials Research Vol. 10 (2006), Trans Tech Publications, Switzerland, pp. 65–78Google Scholar
  15. 15.
    Zaeh, M. F.; Gebhard, P.; Huber, S.; Ruhstorfer, M.: Bifocal Hybrid Laser Beam Welding and Friction Stir Welding of Aluminium Extrusion Components. Advanced Materials Research Vol. 43 (2008), Trans Tech Publications, Switzerland, pp. 69–80Google Scholar
  16. 16.
    Weddeling, C.; Woodward, S.; Nellesen, J.; Psyk, V.; Marré, M.; Brosius, A.; Tekkaya, A. E.; Daehn, G. S.; Tillman, W.: Development of design principles for form-fit joints in lightweight frame structures. Proceedings of the 4th International Conference on High Speed Forming, 2010Google Scholar
  17. 17.
    Weddeling, C.; Woodward, S. T.; Marré, M.; Nellesen, J.; Psyk, V.; Tekkaya, A. E.; Tillman, W.: Influence of groove characteristic on strength of form-fit joints. Journal of Materials Processing Technology, Vol. 211, Issue 5, pp. 925–935, 2010CrossRefGoogle Scholar
  18. 18.
    Marré, M.; Brosius, A.; Tekkaya, A. E.: Joining by Compression and Expansion of (None-) Reinforced Profiles. Advanced Materials Research Vol. 43 (2008), Trans Tech Publications, Switzerland, pp. 57–68Google Scholar
  19. 19.
    Merzkirch, M.; Weidenmann, K. A.; Schulze, V.: Werkstoffkundliche Charakterisierung verbundstranggepresster Leichtmetallmatrix-Verbundwerkstoffe. Fortschritt-Bericht VDI, Integration von Umformen, Trennen und Fügen für die flexible Fertigung von leichten Tragwerkstrukturen, VDI-Verlag, Reihe 2, Nr. 678, pp. 49–72, 2011Google Scholar
  20. 20.
    Hammers, T.; Marré, M.; Rautenberg, J.; Barreiro, P.; Schulze, V.; Biermann, D.; Brosius, A.; Tekkaya, A. E.: Influence of Mandrel’s Surface and Material on the Mechanical Properties of Joints Produced by Electromagnetic Compression. Steel Research Int., May Vol. 80 (2009) No. 5, S. 366–375Google Scholar
  21. 21.
    Huber, M.; Peterson, Ö.; Baier, H.: Knowledge-Based Modeling of Manufacturing Aspects in Structural Optimization Problems. Advanced Materials Research Vol. 43 (2008), Trans Tech Publications, Switzerland, pp. 111–122Google Scholar
  22. 22.
    Wedekind, M.; Baier, H.: Modellierung und Identifikation von Steifigkeit und Festigkeit orthotroper Verbundprofile. Fortschritt-Bericht VDI, Integration von Umformen, Trennen und Fügen für die flexible Fertigung von leichten Tragwerkstrukturen, VDI-Verlag, Reihe 2, Nr. 678, pp. 317–330, 2011Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Forming Technology and Lightweight ConstructionTU DortmundDortmundGermany

Personalised recommendations