Diamond Machining of Nitrocarburized Steel Molds for the Mass Production of Optical Components

Conference paper

Abstract

Optical components, e.g. lenses for cameras in mobile phones or illumination optics, are produced in high volume by repliation techniques in plastics or glass. Thus, the necessary sequence of process steps comprises all steps from optic design to mold making and the final replication process. Every single step in this process chain is accompanied by high resolution measurement techniques and quality management. An important factor in this process chain is the optical mold making by diamond cutting processes with single crystal diamond cutting tools. The drawback of diamond cutting processes so far was that steels which have very good material properties for replication (temperature resistance and hardness) cannot be machined because a catastrophic diamond tool wear occurs. If these materials are applied for optical mold making a complex process combination of grinding and polishing operations is inevitable. The substitution of this traditional process combination by diamond cutting processes can reduce costs and enhances the possibilities of optical mold making. This paper describes a possible solution for diamond machining of steel molding inserts for the replication of optical components by plastic injection molding and hot pressing of glass. Through a thermo-chemical surface treatment the chemical reactivity of steel and single crystal diamond cutting tool can be minimized. Beside the results of the diamond machining processes the occurring diamond tool wear is discussed. From these results a new process chain for the manufacturing of optical components is deduced. This novel process chain consists of nitrocarburizing the steel molding inserts and a subsequent diamond machining operation by turning or milling. Through the nitrocarburizing process the diamond tool wear can be reduced by three orders of magnitude and the machined molding inserts show an optical surface roughness Sa 10nm. These inserts can directly be applied for the replication of plastics or the pressing of glass which is shown by first application examples.

Keywords

Machine Tool Tool Wear Process Chain Workpiece Material Compound Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The work is funded by the German Research Foundation (DFG) within the Transregional Collaborative Research Center SFB/TR4 “Process Chains for the Replication of Complex Optical Elements”.

The authors like to thank Dr. Juan Dong, Dr. Andreas Mehner, Dr. Heinrich Klümper Westkamp, and Prof. Franz Hoffmann from the materials science department of the IWT Bremen for the preparation of the workpieces and for their effective support concerning the thermo-chemical treatment.

References

  1. 1.
    Alschweig, E., et al. “Skalierte Strukturen – Konventionelle Verfahren in der Präzisions- und Mikrobearbeitung”. Tagungsband AWK 24. Aachener Werkzeugmaschinen-Kolloquium, Wettbewerbsfaktor Produktionstechnik, Aachener Perspektiven, Juni 2002: 269-306.Google Scholar
  2. 2.
    Beck, M., Gäbler, J., Hüntrup, V., Meisel, M., Rothenburg, M., Rübenach, O., Schmütz, J., Schwietering, C., Wenda, A. “Möglichkeiten und Grenzen der Mikrozerspanung”. F&M 107, 1999: 64-67.Google Scholar
  3. 3.
    Brinksmeier, E; Gläbe, R.; Osmer, J.: “Ultra-precision Diamond Cutting of Steel Moulds”. Annals of the CIRP, 55/1, p. 551–554 (2006)Google Scholar
  4. 4.
    Brinksmeier, E; Gläbe, R.; Osmer, J.: “Diamond Cutting of FeN-Layers on Steel Substrates for Optical Mould Making”. Key Engineering Materials Vol. 438, p. 31–34 (2010)CrossRefGoogle Scholar
  5. 5.
    Casstevens, J.: “Diamond Turning of Steel in Carbon Saturated Atmospheres”. Precision Engineering 5, p. 9–15 (1983)CrossRefGoogle Scholar
  6. 6.
    Chen, Y; Zhang, L.C; Arsecularatne, J.A., Zarudi, I.: “Polishing of polycrystalline diamond by the technique of dynamic friction”, Part 3:“Mechanism exploration through debris analysis”. International Journal of Machine Tools and Manufacture, 47, p. 2282–2289 (2007)CrossRefGoogle Scholar
  7. 7.
    Dong, J.; Gläbe, R.; Mehner, A., Mayr, P.; Brinksmeier, E.: Verfahren zur Mikrozerspanung von metallischen Werkstoffen. German Patent DE 10333860A1, 2003, United States Patent No US7582170B2, 2009Google Scholar
  8. 8.
    Dong, J.; Hoffmann, F.; Klümper-Westkamp, H.; Zoch, H.-W.: Influence of hydrogen, carbon dioxide and alloy content on pore formation in the white layer. Conference proceedings of the Nitriding Symposium 2, Las Vegas USA, 18.-19.11.2010Google Scholar
  9. 9.
    Evans, C.: “Cryogenic Diamond Turning of Stainless Steel”, Annals of the CIRP, 40/1, p. 571–575 (1991)Google Scholar
  10. 10.
    Gläbe, R.: “Prozess- und Schneidstoffentwicklung zur ultrapräzisen Drehbearbeitung von Stahl”. Dissertation Universität Bremen, Shaker Verlag (2003)Google Scholar
  11. 11.
    Hoffmann, F.; Kunst, H.; Klümper-Westkamp, H.; Liedtke, D.; Mittemeijer E.J.; Rose, E.; Zimmermann, K.: Stand der Kenntnisse über die Porenentstehung beim Nitrieren und Nitrocarburieren. Proceeding of the 1th European conference “Nitriding and Nitrocarburising”, Darmstadt, p. 105–113, (1991)Google Scholar
  12. 12.
    Hoffmann, R.; Mittemeijer, E.J.; Somers, M.A.J.: Verbindungsschichtbildung beim Nitrieren und Nitrocarburieren. In: HTM 51, Nr. 3, p. 162–169, (1996)Google Scholar
  13. 13.
    Hoja, S.; Dong, J.; Klümper-Westkamp, H.; Hoffmann, F. Zoch, H.-W.: Erzeugung diamantbearbeitbarer Verbindungsschichten für die Herstellung von Stahlformeinsätzen. HTM J. Heat Treatm. Mat. 64, p. 215–221 (2009)Google Scholar
  14. 14.
    Klocke, F.; Dambon, O.; Bulla, B.: “Direct Diamond Turning of Aspheric Steel Moulds with Ultra Precise Accuracy”. Proc. of the 25th Annual Meeting of the ASPE 2010, Atlanta, USAGoogle Scholar
  15. 15.
    Lee, W. B.; To, S.; Cheung, C. F.: “Effect of Crystallographic Orientation in Diamond Turning of Copper Single Crystals”. Scripta Materialia, Volume 42/10 (2000), p. 937–945Google Scholar
  16. 16.
    Michaeli, W.; Blömer, P.; Scharf, M.; Brinksmeier, E.; Rickens, K. “Prägen mikrostrukturierter Kunststofffolien”. Kunststoffe 3, 2006: 151–154.Google Scholar
  17. 17.
    Moriwaki, T.; Shamoto, E.: “Ultraprecision Diamond Cutting of Hardened Steel by Applying Elliptical Vibration Cutting”. Annals of the CIRP, 48/1, p. 441–444 (1999)Google Scholar
  18. 18.
    Paul, E.; Evans, C.J.; Mangamelli, A.; Mc Glauflin, M.L.: “Chemical Aspects of Tool Wear in Single Point Diamond Turning”. Precision Engineering 18, p. 4–19 (1996)Google Scholar
  19. 19.
    Prenosil, B.: Einige neue Erkenntnisse über das Gefüge von um 600°C in der Gasatmosphäre carbonitrierten Schichten. In: HTM 28, Nr. 3, p. 157–164, (1973)Google Scholar
  20. 20.
    Sanger, G.M. “The precision Machining of Optics”. in: Applied Optics and Optical Engineering. R.S. Shannon, J.C. Wyant (Hrsg.), Vol. X, 1987, Kap. 6: 251–390.Google Scholar
  21. 21.
    Somers, M.A.J.; Mittemeijer, E.J.: Verbindungsschichtbildung während des Gasnitrierens und des Gas- und Salzbadnitrocarburierens. In: HTM 47, Nr. 1, p. 5–13, (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Foundation Institute of Materials Science, IWTUniversity of BremenBremenGermany

Personalised recommendations