Lightweight Products by Load Optimized Profile Design

  • M. Storbeck
  • P. Beiter
  • S. Berner
  • M. Brenneis
  • W. Schmitt
  • P. Groche
Conference paper

Abstract

The aim of lightweight design is the minimization of weight without harming load capability, stiffness and functionality. This can be realized by adapting material or structure. In general the stiffness to weight ratio of the complete structure has to be optimized. In the present paper, possibilities of three different continuous forming processes for the production of load adapted profiles in high strength steel grades are discussed with regard to lightweight design in mass production. Background for the analysis is a rectangular beam under load as exemplary structure.

A highly efficient process for beams and cantilevers in mass production is roll forming. Compared with other forming processes, classic roll forming offers a number of technical, economical and ecological advantages e.g. high productivity at low tool costs. However, the process is limited to the production of profiles with constant cross section in longitudinal direction and constant sheet thickness. Thus, conventional roll formed parts are suboptimal in terms of lightweight design. It is therefore preferable to overcome these process limits, aiming at optimized cold rolled sections with respect to load or package adaption e.g. profile geometries with variable height, variable sheet thickness or additional bifurcations for an increased stiffness.

In doing so, different requirements concerning process layout, workpiece, tool kit systems, kinematics and process control have to be fulfilled. The process restrictions are given by geometric properties of the semi-finished part, represented by a flexible cutting of the band edge or a non-constant sheet thickness distribution lengthwise (Fig. 1).

This variable geometry is now to be shaped within the flexible forming process. An adequate kinematic is needed in order to move and position the tools according to the flexible semi-finished part and to form the desired part geometry. Furthermore, variable blank geometries induce inhomogeneous bending as well as forming states and lead to geometrical deviations. These might be encountered with the help of numerical process control.

The paper introduces three different processes flexible roll forming, roll forming of tailor rolled blanks and flexible flow splitting which possess compared to conventional roll forming the ability to roll form the above mentioned semi-finished products into profiles with varying cross section in longitudinal direction. It presents issues concerning designing and dimensioning, different tool kit concepts and kinematics as well as process characteristics and optimization strategies to meet close tolerance demands within these three forming processes.

Keywords

Sheet Thickness Blank Holder Constant Cross Section Lightweight Design Flow Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Team of authors: DIN 8586, Fertigungsverfahren Biegeumformen - Einordnung, Unterteilung, Begriffe, Beuth Verlag, 2003Google Scholar
  2. 2.
    Lange, K.: Umformtechnik – Band 3, Blechbearbeitung, Springer, Berlin, Heidelberg, New York, 1990Google Scholar
  3. 3.
    Hagedorn, P.: Technische Mechanik – Band 2, Festigkeitslehre, Verlag Harri Deutsch, Frankfurt, 1995Google Scholar
  4. 4.
    Halmos, G.T.: Roll forming handbook, CRC Press, Boca Raton, 2006Google Scholar
  5. 5.
    Kleiner, M.; Chatti, S.; Heller, B.; Ridane, N.: Process Chain for Manufacturing of Lightweight Structures Made of Tailor Rolled Blanks, Annals of the German Academic Society for Production Engineering, Vol. X/2, p. 15–18, 2003Google Scholar
  6. 6.
    Meyer, A.; Wietbrock, B.; Hirt, G.: Increasing of the drawing depth using tailor rolled blanks – numerical and experimental analysis, International Journal of Machine Tools & Manufacture, Vol. 48/5, p. 522–531, 2008CrossRefGoogle Scholar
  7. 7.
    Beiter, P.; Groche, P.: On the development of novel light weight profiles for automotive industries by roll forming of tailor rolled blanks, Key Engineering Materials Vol. 473, p. 45–52, Trans Tech Publications, Switzerland, 2011Google Scholar
  8. 8.
    Beiter, P.; Groche, P.: Leichtbau im Automobil- und Transportsektor durch Rollprofile aus flexibel gewalzten höher- und höchstfesten Mehrphasenstählen, Tagungsband 7. Fachtagung Walzprofilieren, 2. Beitrag, Darmstadt, 2010Google Scholar
  9. 9.
    Groche, P.; Henkelmann, M.; Götz, P.; Berner, S.: Cold rolled profiles for vehicle construction, archives of civil and mechanical engineering, Vol. VIII, No. 2, p. 31–38, 2008Google Scholar
  10. 10.
    Groche, P.; Vucic, D.; Jöckel, M.: Basics of linear flow splitting, Journal of Materials Processing Technology, Vol. 183, p. 249–255, 2007CrossRefGoogle Scholar
  11. 11.
    Team of authors: DIN 8580, Fertigungsverfahren – Begriffe, Einteilung, Beuth Verlag, 2003Google Scholar
  12. 12.
    Team of authors: DIN 8583–2, Fertigungsverfahren Druckumformen Teil 2: Walzen – Einordnung, Unterteilung, Begriffe, Beuth Verlag, 2003Google Scholar
  13. 13.
    Groche, P.; Schmitt, W.: Verfahrensentwicklung zum flexiblen Spaltprofilieren, Tagungsband 3. Zwischenkolloquium SFB 666, p. 47–52, Meisenbachverlag, Bamberg, 2010Google Scholar
  14. 14.
    Neugebauer, R.: Entwurf parallelkinematischer Maschinen, Springer, Berlin, Heidelberg, New York, 2005Google Scholar
  15. 15.
    Pietsch, J. T.: Adaptive Steuerung und Regelung ebener Parallelroboter, Vulkan-Verlag, Essen, 2003Google Scholar
  16. 16.
    Beitz, W.; Grothe, K.-H.: Taschenbuch für den Maschinenbau, Springer, Berlin, Heidelberg, New York, 2000Google Scholar
  17. 17.
    Unbehauen, H.: Regelungstechnik 1 – Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme, Vieweg Verlag, Braunschweig, Wiesbaden, 2002Google Scholar
  18. 18.
    Lunze J.: Regelungstechnik 1 – Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen, Springer, Heidelberg, Dordrecht, London, New York, 2001MATHGoogle Scholar
  19. 19.
    Groche, P.; Beiter, P.; Vogler, F.; Berner, S.; Schmitt, W.; Duschka, A.: Self-Adjustment in flexible roll-forming lines, Proceedings of the 1st International Congress on Roll Forming RollFORM ‘09, p. 25–31, Bilbao, 2009Google Scholar
  20. 20.
    Poks, B.; Dietl, T.; Sedlmaier, A.: Computer control for roll forming of profiles with discontinuous cross sections, Proceedings of the 1st International Congress on Roll Forming RollFORM ‘09, p. 25–31, Bilbao, 2009Google Scholar
  21. 21.
    Zettler, A.-O.: Grundlagen und Auslegungsmethoden für flexible Profilierprozesse, Dissertation am PtU Darmstadt, Shaker Verlag, Band 71, Aachen, 2007Google Scholar
  22. 22.
    Vucic, D.: Methoden zum Herstellen und Weiterverarbeiten von Spaltprofilen, Dissertation am PtU Darmstadt, Shaker Verlag, Band 82, Aachen, 2010Google Scholar
  23. 23.
    Henkelmann, M.: Entwicklung einer innovativen Kalibrierstrecke zur Erhöhung der Profilgenauigkeit bei der Verarbeitung von höher- und höchstfesten Stählen, Dissertation am PtU Darmstadt, Shaker Verlag, Band 77, Aachen, 2009Google Scholar
  24. 24.
    Groche, P.; Zettler, A.-O.; Berner, S.; Schneider, G.: Development and verification of a one-step-model for the design of flexible roll formed parts, International Journal of Material Forming Online First™, 8 September 2010.Google Scholar
  25. 25.
    Berner, S.; Storbeck, M.; Groche, P.: A study on flexible roll formed products accuracy by means of FEA and experimental tests, the 14th international Esaform conference on material forming: ESAFORM 2011, AIP conference proceedings, Vol. 1353, p. 345–350Google Scholar
  26. 26.
    Abee, A.; Berner, S.; Groche, P.; Sedlmaier, A.: Accuracy improvement of roll formed profiles with variable cross section, Proceedings of the 9th international conference on technology of plasticity ICTP 2008, p. 520–527, Korea, 2008Google Scholar
  27. 27.
    Larrañaga, J.; Berner, S.; Galdos, L.; Groche, P.: International conference on advances in materials and processing technologies AMPT 2010, AIP Conference Proceedings, Vol. 1315, p. 557–562, 2011Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Storbeck
    • P. Beiter
      • 1
    • S. Berner
      • 1
    • M. Brenneis
      • 1
    • W. Schmitt
      • 1
    • P. Groche
      • 1
    1. 1.Institute for Production Engineering and Forming Machines-PtUTU DarmstadtDarmstadtGermany

    Personalised recommendations