Novel Robot-Based End-Effector Design for an Automated Preforming of Limb Carbon Fiber Textiles

Conference paper

Abstract

With respect to the proceeding shortage of fossil fuels there is a need to apply lightweight constructions especially in the transport sector. Due to their outstanding material properties the use of parts which are made from carbon fiber reinforced plastics (CFRP) has become more and more popular. Despite the advantages of carbon structures and its increasing relevance a further spread of this promising technology is limited by high production costs which are caused by intensive manual labor. In this paper a novel robot-based end-effector is presented which is able to replace the time consuming and error-prone preforming of dry carbon fiber textiles by an automated process. Based on the results of an intensive process analysis a novel multifunctional end-effector is designed, which integrates the functionalities gripping, draping and heating. For integration in the production environment and an estimation of cycle times the automation solution is simulated. The gained results of the realized end-effector on the industrial reference toolings show the feasibility of this approach.

Keywords

Storage System Operating Principle Carbon Fiber Reinforce Plastic Industrial Manufacturing Process Thermoplastic Binder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CAD

Computer-aided design

CF

Carbon fiber

CFRP

Carbon fiber reinforced plastics

FRP

Fiber reinforced plastics

NCF

Non-crimped fabrics

Prepreg

Preimpregnated composite materials

RTM

Resin transfer molding

VAP

Vacuum assisted process

VARI

Vacuum assisted resin infusion

References

  1. 1.
    Angerer, A.; Ehinger, C.; Hoffmann, A.; Reif, W.; Reinhart, G.; Strasser, G.: Automated cutting and handling of carbon fiber fabrics in aerospace industries. In: Institute of Electrical and Electronics Engineers et al. (Hrsg.): IEEE Conference on Automation Science and Engineering (CASE), 2010. Piscataway, NJ: IEEE 2010, S. 861. ISBN: 978-1-4244-5447-1.Google Scholar
  2. 2.
  3. 3.
    Drechsler, K.: Automatisierung als Schlüssel für die kostengünstige Fertigung von Faserverbund-Leichtbaustrukturen im Flugzeug- und Automobilbau (Automatica 2008). München: 12.06.2008.Google Scholar
  4. 4.
    Drechsler, K.: Einführung in Werkstoffe und Fertigungstechnologien für Carbon Composites. Vorlesungsskript. Garching: 2009.Google Scholar
  5. 5.
    Ehrenstein, G. W.: Faserverbund-Kunststoffe. 2., völlig überarb. Aufl. München: Hanser 2006. ISBN: 978-3-446-22716-3.Google Scholar
  6. 6.
    Greb, C.; Schnabel, A.; Gries, T.; Kruse, F.: Development of new preforming processes for high performance fibre-reinforced plastic (FRP) components. (Hrsg.): SAMPE Journal 2010, S. 42–51.Google Scholar
  7. 7.
    Gutsche, C.: Beitrag zur automatisierten Montage technischer Textilien (Techn. Univ., Diss. – Berlin, 1992.). München: Hanser 1993. ISBN: 3-446-17485-0. (Produktionstechnik - Berlin 115).Google Scholar
  8. 8.
    Henning, K.: Wirtschaftliche Herstellung von Faserverbundbauteilen mit Hilfe automatisiert hergestellter textiler Preforms. Aachen: Shaker 2008. ISBN: 978-3-832-27133-6. (Textiltechnik Bd. 14).Google Scholar
  9. 9.
    Kleineberg, M.; Pabsch, A.; Herrmann, A. S.: Kostengünstige Faserverbundstrukturen – eine Frage neuer Produktionsansätze. http://www.dlr.de/fa/Portaldata/17/Resources/dokumente/publikationen/2000/03_herrmann.pdf – 11.08.2010.
  10. 10.
    Kordi, M.; Husing, M.; Corves, B.: Development of a multifunctional robot end-effector system for automated manufacture of textile preforms. (Hrsg.): IEEE/ASME International Conference on Advanced Intelligent Mechatronics 2007, S. 1–6.Google Scholar
  11. 11.
    Mitschang, P.; Beresheim, G.: Handbuch Verbundwerkstoffe. München: Hanser 2004. ISBN: 3-446-22041-0.Google Scholar
  12. 12.
    Reinhart, G.; Straßer, G.; Ehinger, C.: Highly Flexible Automated Manufacturing of Composite Structures Consisting of Limp Carbon Fibre Textiles. SAE International Journal of Aerospace 2 (2009) 2, S. 181–187.Google Scholar
  13. 13.
    Reyne, M.: Composite solutions. Paris: JEC publications DL 2006. ISBN: 2-9526276-0-6.Google Scholar
  14. 14.
    Schürmann, H.: Konstruieren mit Faser-Kunststoff-Verbunden. 2., bearbeitete und erweiterte Auflage. Aufl. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg 2007. ISBN: 978-3-540-72189-5. (VDI-Buch).Google Scholar
  15. 15.
    Schutzrecht () 08.05.2003Schutzrecht DE 10152232 A1: Verfahren und Vorrichtung zum automatisierten handhaben von Harzmatten bei der Herstellung von SMC-Teilen.Google Scholar
  16. 16.
    Vdi 2221: Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte. Düsseldorf: Verein Deutscher Ingenieure 1993.Google Scholar
  17. 17.
    Vdi 2860: Montage- und Handhabungstechnik. Handhabungsfunktionen, Montageeinrichtungen, Begriffe, Definitionen. Düsseldorf: VDI 1990.Google Scholar
  18. 18.
    Verdenhalven, J.: Industrialization of the Carbon Composite Industry. In: SAMPE EUROPE Business Office and Scientific Committee of SAMPE EUROPE (Hrsg.): CFRP: The cost down solution for top performance 2008. ISBN: 978-3-9522677-8-3.Google Scholar
  19. 19.
    Wiedemann, M.: Status of application in airframe structures and future development process. In: National Agency for Finite Element Methods and Standards (Hrsg.): The analysis advantage: perspectives on engineering simulation for today and beyond. Glasgow: NAFEMS 2009. ISBN: 978-1-87437-642-2.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Machine Tools and Industrial Management (iwb)TU MünchenGarchingGermany
  2. 2.Institute for Machine Tools and Industrial Management (iwb)TU MünchenAugsburgGermany

Personalised recommendations