Network Design Problems

Chapter
Part of the Algorithms and Combinatorics book series (AC, volume 21)

Abstract

Connectivity is a very important concept in combinatorial optimization. In Chapter 8 we showed how to compute the connectivity between each pair of vertices of an undirected graph.Now we are looking for subgraphs that satisfy certain connectivity requirements.

Keywords

Approximation Algorithm Steiner Tree Vertex Cover Network Design Problem Steiner Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, X., and Du, D.-Z. [2001]: Steiner Trees in Industry. Kluwer, Dordrecht 2001Google Scholar
  2. Du, D.-Z., Smith, J.M., and Rubinstein, J.H. [2000]: Advances in Steiner Trees. Kluwer, Boston 2000MATHGoogle Scholar
  3. Hwang, F.K., Richards, D.S., and Winter, P. [1992]: The Steiner Tree Problem; Annals of Discrete Mathematics 53. North-Holland, Amsterdam 1992Google Scholar
  4. Goemans, M.X., and Williamson, D.P. [1996]: The primal-dual method for approximation algorithms and its application to network design problems. In: Approximation Algorithms for NP-Hard Problems. (D.S. Hochbaum, ed.), PWS, Boston, 1996Google Scholar
  5. Grötschel, M., Monma, C.L., and Stoer, M. [1995]: Design of survivable networks. In: Handbooks in Operations Research and Management Science; Volume 7; Network Models (M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds.), Elsevier, Amsterdam 1995Google Scholar
  6. Kerivin, H., and Mahjoub, A.R. [2005]: Design of survivable networks: a survey. Networks 46 (2005), 1–21CrossRefMATHMathSciNetGoogle Scholar
  7. Prömel, H.J., and Steger, A. [2002]: The Steiner Tree Problem. Vieweg, Braunschweig 2002MATHGoogle Scholar
  8. Stoer, M. [1992]: Design of Survivable Networks. Springer, Berlin 1992MATHGoogle Scholar
  9. Vazirani, V.V. [2001]: Approximation Algorithms. Springer, Berlin 2001, Chapters 22 and 23Google Scholar
  10. Agrawal, A., Klein, P.N., and Ravi, R. [1995]: When trees collide: an approximation algorithm for the generalized Steiner tree problem in networks. SIAM Journal on Computing 24 (1995), 440–456CrossRefMATHMathSciNetGoogle Scholar
  11. Arora, S. [1998]: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45 (1998), 753–782CrossRefMATHMathSciNetGoogle Scholar
  12. Berman, P., and Ramaiyer, V. [1994]: Improved approximations for the Steiner tree problem. Journal of Algorithms 17 (1994), 381–408CrossRefMATHMathSciNetGoogle Scholar
  13. Bern, M., and Plassmann, P. [1989]: The Steiner problem with edge lengths 1 and 2. Information Processing Letters 32 (1989), 171–176CrossRefMATHMathSciNetGoogle Scholar
  14. Bertsimas, D., and Teo, C. [1995]: From valid inequalities to heuristics: a unified view of primal-dual approximation algorithms in covering problems. Operations Research 46 (1998), 503–514CrossRefMATHMathSciNetGoogle Scholar
  15. Bertsimas, D., and Teo, C. [1997]: The parsimonious property of cut covering problems and its applications. Operations Research Letters 21 (1997), 123–132CrossRefMATHMathSciNetGoogle Scholar
  16. Björklund, A., Husfeldt, T., Kaski, P., and Koivisto, M. [2007]: Fourier meets Möbius: fast subset convolution. Proceedings of the 39th Annual ACM Symposium on Theory of Computing (2007), 67–74Google Scholar
  17. Borchers, A., and Du, D.-Z. [1997]: The k-Steiner ratio in graphs. SIAM Journal on Computing 26 (1997), 857–869CrossRefMATHMathSciNetGoogle Scholar
  18. Borradaile, G., Klein, P., and Mathieu, C., [2009]: An O(nlogn) approximation scheme for Steiner tree in planar graphs. ACM Transactions on Algorithms 5 (2009), Article 31Google Scholar
  19. Byrka, J., Grandoni, F., Rothvoß, T., and Sanità, L. [2010]: An improved LP-based approximation for Steiner tree. Proceedings of the 42th Annual ACM Symposium on Theory of Computing (2010), 583–592Google Scholar
  20. Chakraborty, T., Chuzhoy, J., and Khanna, S. [2008]: Network design for vertex connectivity. Proceedings of the 40th Annual ACM Symposium on Theory of Computing (2008), 167–176Google Scholar
  21. Cheriyan, J., and Vetta, A. [2007]: Approximation algorithms for network design with metric costs. SIAM Journal on Discrete Mathematics 21 (2007), 612–636CrossRefMATHMathSciNetGoogle Scholar
  22. Choukhmane, E. [1978]: Une heuristique pour le problème de l’arbre de Steiner. RAIRO Recherche Opérationnelle 12 (1978), 207–212 [in French]Google Scholar
  23. Chuzhoy, J., and Khanna, S. [2009]: An O(k 3logn)-approximation algorithm for vertex-connectivity survivable network design. Proceedings of the 50th Annual Symposium on Foundations of Computer Science (2009), 437–441Google Scholar
  24. Clementi, A.E.F., and Trevisan, L. [1999]: Improved non-approximability results for minimum vertex cover with density constraints. Theoretical Computer Science 225 (1999), 113–128CrossRefMATHMathSciNetGoogle Scholar
  25. Dreyfus, S.E., and Wagner, R.A. [1972]: The Steiner problem in graphs. Networks 1 (1972), 195–207CrossRefMATHMathSciNetGoogle Scholar
  26. Du, D.-Z., Zhang, Y., and Feng, Q. [1991]: On better heuristic for Euclidean Steiner minimum trees. Proceedings of the 32nd Annual Symposium on Foundations of Computer Science (1991), 431–439. See also Mathematical Programming 57 (1992) 193–202Google Scholar
  27. Erickson, R.E., Monma, C.L., and Veinott, A.F., Jr. [1987]: Send-and-split method for minimum concave-cost network flows. Mathematics of Operations Research 12 (1987), 634–664CrossRefMATHMathSciNetGoogle Scholar
  28. Fleischer, L., Jain, K., and Williamson, D.P. [2006]: Iterative rounding 2-approximation algorithms for minimum-cost vertex connectivity problems. Journal of Computer and System Sciences 72 (2006), 838–867CrossRefMATHMathSciNetGoogle Scholar
  29. Fuchs, B., Kern, W., Mölle, D., Richter, S., Rossmanith, P., and Wang, X. [2007]: Dynamic programming for minimum Steiner trees. Theory of Computing Systems 41 (2007), 493–500CrossRefMATHMathSciNetGoogle Scholar
  30. Gabow, H.N. [2005]: An improved analysis for approximating the smallest k-edge connected spanning subgraph of a multigraph. SIAM Journal on Discrete Mathematics 19 (2005), 1–18CrossRefMATHMathSciNetGoogle Scholar
  31. Gabow, H.N., Goemans, M.X., and Williamson, D.P. [1998]: An efficient approximation algorithm for the survivable network design problem. Mathematical Programming B 82 (1998), 13–40MATHMathSciNetGoogle Scholar
  32. Gabow, H.N., Goemans, M.X., Tardos, É., and Williamson, D.P. [2009]: Approximating the smallest k-edge connected spanning subgraph by LP-rounding. Networks 53 (2009), 345–357CrossRefMATHMathSciNetGoogle Scholar
  33. Garey, M.R., Graham, R.L., and Johnson, D.S. [1977]: The complexity of computing Steiner minimal trees. SIAM Journal of Applied Mathematics 32 (1977), 835–859CrossRefMATHMathSciNetGoogle Scholar
  34. Garey, M.R., and Johnson, D.S. [1977]: The rectilinear Steiner tree problem is NP-complete. SIAM Journal on Applied Mathematics 32 (1977), 826–834CrossRefMATHMathSciNetGoogle Scholar
  35. Gilbert, E.N., and Pollak, H.O. [1968]: Steiner minimal trees. SIAM Journal on Applied Mathematics 16 (1968), 1–29CrossRefMATHMathSciNetGoogle Scholar
  36. Goemans, M.X., and Bertsimas, D.J. [1993]: Survivable networks, linear programming and the parsimonious property, Mathematical Programming 60 (1993), 145–166CrossRefMATHMathSciNetGoogle Scholar
  37. Goemans, M.X., Goldberg, A.V., Plotkin, S., Shmoys, D.B., Tardos, É., and Williamson, D.P. [1994]: Improved approximation algorithms for network design problems. Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (1994), 223–232Google Scholar
  38. Goemans, M.X., and Williamson, D.P. [1995]: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24 (1995), 296–317CrossRefMATHMathSciNetGoogle Scholar
  39. Gröpl, C., Hougardy, S., Nierhoff, T., and Prömel, H.J. [2001]: Approximation algorithms for the Steiner tree problem in graphs. In: Cheng and Du [2001], pp. 235–279Google Scholar
  40. Hanan, M. [1966]: On Steiner’s problem with rectilinear distance. SIAM Journal on Applied Mathematics 14 (1966), 255–265CrossRefMATHMathSciNetGoogle Scholar
  41. Hetzel, A. [1995]: Verdrahtung im VLSI-Design: Spezielle Teilprobleme und ein sequentielles Lösungsverfahren. Ph.D. thesis, University of Bonn, 1995 [in German]Google Scholar
  42. Hougardy, S., and Prömel, H.J. [1999]: A 1. 598 approximation algorithm for the Steiner tree problem in graphs. Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (1999), 448–453Google Scholar
  43. Hwang, F.K. [1976]: On Steiner minimal trees with rectilinear distance. SIAM Journal on Applied Mathematics 30 (1976), 104–114CrossRefMATHMathSciNetGoogle Scholar
  44. Jain, K. [2001]: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21 (2001), 39–60CrossRefMATHMathSciNetGoogle Scholar
  45. Jothi, R., Raghavachari, B., and Varadarajan, S. [2003]: A 5/4-approximation algorithm for minimum 2-edge-connectivity. Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (2003), 725–734Google Scholar
  46. Karp, R.M. [1972]: Reducibility among combinatorial problems. In: Complexity of Computer Computations (R.E. Miller, J.W. Thatcher, eds.), Plenum Press, New York 1972, pp. 85–103Google Scholar
  47. Karpinski, M., and Zelikovsky, A. [1997]: New approximation algorithms for Steiner tree problems. Journal of Combinatorial Optimization 1 (1997), 47–65CrossRefMATHMathSciNetGoogle Scholar
  48. Khuller, S., and Raghavachari, B. [1996]: Improved approximation algorithms for uniform connectivity problems. Journal of Algorithms 21 (1996), 434–450CrossRefMATHMathSciNetGoogle Scholar
  49. Khuller, S., and Vishkin, U. [1994]: Biconnectivity augmentations and graph carvings. Journal of the ACM 41 (1994), 214–235CrossRefMATHMathSciNetGoogle Scholar
  50. Klein, P.N., and Ravi, R. [1993]: When cycles collapse: a general approximation technique for constrained two-connectivity problems. Proceedings of the 3rd Integer Programming and Combinatorial Optimization Conference (1993), 39–55Google Scholar
  51. Korte, B., Prömel, H.J., and Steger, A. [1990]: Steiner trees in VLSI-layout. In: Paths, Flows, and VLSI-Layout (B. Korte, L. Lovász, H.J. Prömel, A. Schrijver, eds.), Springer, Berlin 1990, pp. 185–214Google Scholar
  52. Kortsarz, G., Krauthgamer, R., and Lee, J.R. [2004]: Hardness of approximation for vertex-connectivity network design problems. SIAM Journal on Computing 33 (2004), 704–720CrossRefMATHMathSciNetGoogle Scholar
  53. Kou, L. [1990]: A faster approximation algorithm for the Steiner problem in graphs. Acta Informatica 27 (1990), 369–380CrossRefMATHMathSciNetGoogle Scholar
  54. Kou, L., Markowsky, G., and Berman, L. [1981]: A fast algorithm for Steiner trees. Acta Informatica 15 (1981), 141–145CrossRefMATHMathSciNetGoogle Scholar
  55. Martin, A. [1992]: Packen von Steinerbäumen: Polyedrische Studien und Anwendung. Ph.D. thesis, Technical University of Berlin 1992 [in German]Google Scholar
  56. Mehlhorn, K. [1988]: A faster approximation algorithm for the Steiner problem in graphs. Information Processing Letters 27 (1988), 125–128CrossRefMATHMathSciNetGoogle Scholar
  57. Melkonian, V., and Tardos, É. [2004]: Algorithms for a network design problem with crossing supermodular demands. Networks 43 (2004), 256–265CrossRefMATHMathSciNetGoogle Scholar
  58. Nagarajan, V., Ravi, R., and Singh, M. [2010]: Simpler analysis of LP extreme points for traveling salesman and survivable network design problems. Operations Research Letters 38 (2010), 156–160CrossRefMATHMathSciNetGoogle Scholar
  59. Robins, G., and Zelikovsky, A. [2005]: Tighter bounds for graph Steiner tree approximation. SIAM Journal on Discrete Mathematics 19 (2005), 122–134CrossRefMATHMathSciNetGoogle Scholar
  60. Takahashi, M., and Matsuyama, A. [1980]: An approximate solution for the Steiner problem in graphs. Mathematica Japonica 24 (1980), 573–577MATHMathSciNetGoogle Scholar
  61. Thimm, M. [2003]: On the approximability of the Steiner tree problem. Theoretical Computer Science 295 (2003), 387–402CrossRefMATHMathSciNetGoogle Scholar
  62. Vygen, J. [2011]: Faster algorithm for optimum Steiner trees. Information Processing Letters 111 (2011), 1075–1079CrossRefGoogle Scholar
  63. Warme, D.M., Winter, P., and Zachariasen, M. [2000]: Exact algorithms for plane Steiner tree problems: a computational study. In: Advances in Steiner trees (D.-Z. Du, J.M. Smith, J.H. Rubinstein, eds.), Kluwer Academic Publishers, Boston, 2000, pp. 81–116Google Scholar
  64. Williamson, D.P., Goemans, M.X., Mihail, M., and Vazirani, V.V. [1995]: A primal-dual approximation algorithm for generalized Steiner network problems. Combinatorica 15 (1995), 435–454CrossRefMATHMathSciNetGoogle Scholar
  65. Zelikovsky, A.Z. [1993]: An 11/6-approximation algorithm for the network Steiner problem. Algorithmica 9 (1993), 463–470CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations