Towards a General Composition Semantics for Rule-Based Model Transformation

  • Dennis Wagelaar
  • Massimo Tisi
  • Jordi Cabot
  • Frédéric Jouault
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6981)

Abstract

As model transformations have become an integral part of the automated software engineering lifecycle, reuse, modularisation, and composition of model transformations becomes important. One way to compose model transformations is to compose modules of transformation rules, and execute the composition as one transformation (internal composition). This kind of composition can provide fine-grained semantics, as it is part of the transformation language. This paper aims to generalise two internal composition mechanisms for rule-based transformation languages, module import and rule inheritance, by providing executable semantics for the composition mechanisms within a virtual machine. The generality of the virtual machine is demonstrated for different rule-based transformation languages by compiling those languages to, and executing them on this virtual machine. We will discuss how ATL and graph transformations can be mapped to modules and rules inside the virtual machine.

Keywords

Model transformation Model transformation composition ATL Graph transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kleppe, A.G.: First European Workshop on Composition of Model Transformations - CMT 2006. Technical Report TR-CTIT-06-34, Enschede (2006)Google Scholar
  2. 2.
    Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling Framework. The Eclipse Series. Addison Wesley Professional, Reading (2003)Google Scholar
  3. 3.
    Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation, 1st edn. Springer, Heidelberg (2006)MATHGoogle Scholar
  5. 5.
    Jouault, F., Kurtev, I.: On the Architectural Alignment of ATL and QVT. In: Proceedings SAC 2006 (2006)Google Scholar
  6. 6.
    Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W., Kolovos, D., Paige, R., Lauder, M., Schürr, A., Wagelaar, D.: A Comparison of Rule Inheritance in Model-to-Model Transformation Languages. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 31–46. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 46–60. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Object Management Group, Inc.: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Final Adopted Specification, ptc/05-11-01 (2005)Google Scholar
  10. 10.
    Varró, G., Friedl, K., Varró, D.: Adaptive Graph Pattern Matching for Model Transformations using Model-sensitive Search Plans. Electr. Notes Theor. Comput. Sci. 152, 191–205 (2006)CrossRefGoogle Scholar
  11. 11.
    Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in the viatra model transformation system. In: Proceedings of GRaMoT 2008, pp. 25–32. ACM Press, New York (2008)Google Scholar
  12. 12.
    Wagelaar, D., Van Der Straeten, R., Deridder, D.: Module superimposition: a composition technique for rule-based model transformation languages. Software and Systems Modeling 9, 285–309 (2009)CrossRefGoogle Scholar
  13. 13.
    Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph Rewrite Language Based on the Unified Modeling Language and Java. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced Concepts and Tools for In-Place EMF Model Transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Lawley, M., Steel, J.: Practical Declarative Model Transformation with Tefkat. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139–150. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 62–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dennis Wagelaar
    • 1
  • Massimo Tisi
    • 2
  • Jordi Cabot
    • 2
  • Frédéric Jouault
    • 2
  1. 1.Vrije Universiteit BrusselBrusselsBelgium
  2. 2.École des Mines de NantesNantesFrance

Personalised recommendations