Model-Based (Mechanical) Product Design

  • Mehdi Iraqi-Houssaini
  • Mathias Kleiner
  • Lionel Roucoules
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6981)


Mechanical product engineering is a research and industrial activity which studies the design of complex mechanical systems. The process, which involves the collaboration of various experts using domain-specific software, raises syntactic and semantic interoperability issues which are not addressed by existing software solutions or their underlying concepts. This article proposes a flexible model-based software architecture that allows for a federation of experts to define and collaborate in innovative design processes. The presented generic approach is backed and validated by its implementation on an academic usecase.


Product Design Model Transformation Knowledge Model Design Scenario Product LifeCycle Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Etienne, A., Guyot, E., Cabannes, G., Ducellier, G., Roucoules, L.: Specification and developments of interoperability solutions dedicated to multiple expertise collaboration in a design framework. In: International Conference on Software, Knowledge, Information Management and Applications (2008)Google Scholar
  2. 2.
    Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and modeling in the small. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 33–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    PLM Market Growth in 2008, Mid-Year (2009),
  4. 4.
    Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Syst. J. 45, 621–645 (2006)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Kadiri, S.E., Pernelle, P., Delattre, M., Bouras, A.: Current situation of plm systems in sme/smi: Survey’s results and analysis. In: International Conference on Product Lifecycle Management (2009)Google Scholar
  7. 7.
    Ehrig, K., Guerra, E., Lengyel, J.L., Levendovszky, T., Prange, U., Taentzer, G., Varró, D., Varró-Gyapay, S.: Model transformation by graph transformation: A comparative study. In: MTiP 2005, International Workshop on Model Transformations in Practice (Satellite Event of MoDELS 2005) (2005)Google Scholar
  8. 8.
  9. 9.
    Krause, F.-L., et al.: Product modelling. CIRP Annals - Manufacturing Technology 42(2), 695–706 (1993)CrossRefGoogle Scholar
  10. 10.
    ISO 10303-11, Industrial automation systems and integration - Product data representation and exchange - Part 11: The EXPRESS language reference (1994)Google Scholar
  11. 11.
    ISO 10303-203, Industrial automation systems and integration - Product data representation and exchange - Part 203: Configuration controlled 3D designs of mechanical parts and assemblies (1994)Google Scholar
  12. 12.
    Maier, F., Mayer, W., Stumptner, M., Muehlenfeld, A.: Ontology-based process modelling for design optimisation support. In: Design Computing and Cognition 2008, pp. 513–532. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Frey, E., Ostrosi, E., Roucoules, L., Gomes, S.: Multi-domain product modelling: from requirements to cad and simulation tools. In: International Conference on Engineering Design (2009)Google Scholar
  14. 14.
    Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide. Addison-Wesley Professional, Reading (2005)Google Scholar
  15. 15.
    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering design: a systematic approach, 6th edn. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    Galvão, I., Goknil, A.: Survey of traceability approaches in model-driven engineering. In: EDOC, pp. 313–326. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  17. 17.
    ISO 14258, Industrial Automation Systems - Concepts and Rules for Enterprise Models (1994)Google Scholar
  18. 18.
    Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Klein Meyer, J.S.: Modélisation multi-physique des systémes complexes dans un contexte de DFX. Application á la conception de micro-mécanismes. PhD thesis, Université de Technologie de Troyes (2008)Google Scholar
  20. 20.
    Kitamura, Y., Takafuji, S., Mizoguchi, R.: Towards a reference ontology for functional knowledge interoperability. In: ASME Conference Proceedings, 2007(48078), pp. 111–120 (2007)Google Scholar
  21. 21.
    Klein Meyer, J., Roucoules, L., Grave, A., Chaput, J.: Case study of a mems switch supported by a fbs and dfm framework. In: The Future of Product Development, pp. 377–386. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Krause, F.-L., Kaufmann, U.: Meta-modelling for interoperability in product design. CIRP Annals - Manufacturing Technology 56(1), 159–162 (2007)CrossRefGoogle Scholar
  23. 23.
    Roucoules, L., Skander, A.: Manufacturing process selection and integration in product design. analysis and synthesis approaches. In: CIRP Design Seminar (2003)Google Scholar
  24. 24.
    Roucoules, L., Lafon, P., et al.: Knowledge intensive approach towards multiple product modelling and geometry emergence to foster cooperative design. In: CIRP Design Seminar (2006)Google Scholar
  25. 25.
    Mühlenfeld, A., Maier, F., Mayer, W., Stumptner, M.: Modelling and management of design artefacts in design optimisation. In: Collaborative Product and Service Life Cycle Management for a Sustainable World, Advanced Concurrent Engineering, pp. 513–520. Springer, London (2008)CrossRefGoogle Scholar
  26. 26.
    Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT) Specification, version 1.0 (2008)Google Scholar
  27. 27.
    Tichkiewitch, S.: Specifications on integrated design methodology using a multi-view product model. In: Biennial Joint Conference on Engineering Systems Design and Analysis, pp. 101–108 (1996)Google Scholar
  28. 28.
    Sadeghi, M., Noel, F., Hadj-Hamou, K.: Development of control mechanisms to support coherency of product model during cooperative design process. Journal of Intelligent Manufacturing 21, 539–554 (2010)CrossRefGoogle Scholar
  29. 29.
    Shah, A.A., Schaefer, D., Paredis, C.J.J.: Enabling multi-view modeling with sysml profiles and model transformations. In: International Conference on Product Lifecycle Management, pp. 527–538 (2009)Google Scholar
  30. 30.
    Shah, J.J.: Assessment of features technology. Computer-Aided Design 23(5), 331–343 (1991)CrossRefzbMATHGoogle Scholar
  31. 31.
    Sohlenius, G.: Concurrent engineering. CIRP Annals - Manufacturing Technology 41(2), 645–655 (1992)CrossRefGoogle Scholar
  32. 32.
    Staab, S., Walter, T., Gröner, G., Parreiras, F.S.: Model Driven Engineering with Ontology Technologies. In: Aßmann, U., Bartho, A., Wende, C. (eds.) Reasoning Web. LNCS, vol. 6325, pp. 62–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    ISO 10303, Industrial automation systems and integration - Product data representation and exchange (1994)Google Scholar
  34. 34.
    Stevens, P.: Bidirectional model transformations in qvt: semantic issues and open questions. Software and System Modeling 9(1), 7–20 (2010)CrossRefGoogle Scholar
  35. 35.
    CATIA (Dassault systems) (2011),
  36. 36.
  37. 37.
    Gary Wang, G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. Mechanical Design 129(4), 370–380 (2007)CrossRefGoogle Scholar
  38. 38.
    Yan, X.-T.: A multiple perspective product modeling and simulation approach to engineering design support. Concurrent Engineering Research and Application Journal 11(3), 221–234 (2003)CrossRefGoogle Scholar
  39. 39.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mehdi Iraqi-Houssaini
    • 1
  • Mathias Kleiner
    • 1
  • Lionel Roucoules
    • 1
  1. 1.Arts et Métiers ParisTech ; CNRS, LSISFrance

Personalised recommendations