Advertisement

Towards Quality Driven Exploration of Model Transformation Spaces

  • Mauro Luigi Drago
  • Carlo Ghezzi
  • Raffaela Mirandola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6981)

Abstract

Verifying that a software system has certain non-functional properties is a primary concern in many engineering fields. Although several model-driven approaches exist to predict quality attributes from system models, they still lack the proper level of automation envisioned by Model Driven Software Development. When a potential issue concerning non-functional properties is discovered, the identification of a solution is still entirely up to the engineer and to his/her experience. This paper presents QVT-Rational, our multi-modeling solution to automate the detection-solution loop. We leverage and extend existing model transformation techniques with constructs to elicit the space of the alternative solutions and to bind quality properties to them. Our framework is highly customizable, it supports the definition of non-functional requirements and provides an engine to automatically explore the solution space. We evaluate our approach by applying it to two well-known software engineering problems — Object-Relational Mapping and components allocation — and by showing how several solutions that satisfy given performance requirements can be automatically identified.

Keywords

Feedback Provisioning Model Transformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.: Archeopterix: An extendable tool for architecture optimization of aadl models. In: MOMPES. IEEE, Los Alamitos (2009)Google Scholar
  2. 2.
    Alur, D., Crupi, J., Malks, D.: Core J2EE patterns: best practices and design strategies. Sun Microsystems Press (2003)Google Scholar
  3. 3.
    Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with the palladio component model. In: WOSP. ACM, New York (2007)Google Scholar
  4. 4.
    Bures, T., Carlson, J., Crnkovic, J., Sentilles, S., Vulgarakis, A.: Procom - the progress component model reference manual, version 1.0. Tech. Rep. MHD-MRTC-230/2008-1-SE, Malardalen University (June 2008)Google Scholar
  5. 5.
    Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for qos-aware service composition based on genetic algorithms. In: GECCO. ACM, New York (2005)Google Scholar
  6. 6.
    Ciancone, A., Filieri, A., Drago, M.L., Mirandola, R., Grassi, V.: KlaperSuite: An integrated model-driven environment for reliability and performance analysis of component-based systems. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS, vol. 6705, pp. 99–114. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: A process to effectively identify “Guilty” performance antipatterns. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 368–382. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Drago, M.L., Ghezzi, C., Mirandola, R.: A quality driven extension to the qvt-relations transformation language. In: CSRD. Springer, Heidelberg (2011) (submitted to), http://home.dei.polimi.it/drago/qvtrr.pdf Google Scholar
  9. 9.
    Insfrán, E., Gonzalez-Huerta, J., Abrahão, S.: Design guidelines for the development of quality-driven model transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 288–302. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Jackson, E.K., Kang, E., Dahlweid, M., Seifert, D., Santen, T.: Components, platforms and possibilities: Towards generic automation for mda. In: EMSOFT. ACM, New York (2010)Google Scholar
  11. 11.
    Kurtev, I.: Adaptability of Model Transformations. Ph.D. thesis, Unversity of Twente, Twente, Netherlands (2005)Google Scholar
  12. 12.
    Lau, S.Q., Czarnecki, K.: Domain Analysis of E-Commerce Systems Using Feature-Based Model Templates. Master’s thesis, University of Waterloo, Canada (2006)Google Scholar
  13. 13.
    Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice Hall, Englewood Cliffs (1984)Google Scholar
  14. 14.
    Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software architecture models for performance, reliability, and cost using evolutionary algorithms. In: WOSP/SIPEW (2010)Google Scholar
  15. 15.
    McGregor, J.D., Bachmann, F., Bass, L., Bianco, P., Klein, M.: Using arche in the classroom: One experience. Tech. Rep. SEI-2007-TN-001, CMU (2007)Google Scholar
  16. 16.
    Merilinna, J.: A Tool for Quality-Driven Architecture Model Transformation. Ph.D. thesis, VVT Technical Research Centre of Finland, Vuorimiehentie, Finland (2005)Google Scholar
  17. 17.
    Neema, S., Sztipanovits, J., Karsai, G., Butts, K.: Constraint-based design-space exploration and model synthesis. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 290–305. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Object Management Group (OMG): Mof qvt specification 1.0 (April 2008), http://www.omg.org/spec/QVT/1.0
  19. 19.
    Parsons, T.: A framework for detecting performance design and deployment antipatterns in component based enterprise systems. In: DSM. ACM, New York (2005)Google Scholar
  20. 20.
    Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations, Principles and Techniques. Springer, Heidelberg (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Saxena, T., Karsai, G.: MDE-based approach for generalizing design space exploration. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 46–60. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Smith, C.U., Williams, L.G.: Performance solutions: a practical guide to creating responsive, scalable software. Addison Wesley, Reading (2002)Google Scholar
  23. 23.
    Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Performance by unified model analysis (puma). In: WOSP. ACM, New York (2005)Google Scholar
  24. 24.
    Xu, J.: Rule-based automatic software performance diagnosis and improvement. In: WOSP. ACM, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mauro Luigi Drago
    • 1
  • Carlo Ghezzi
    • 1
  • Raffaela Mirandola
    • 1
  1. 1.DeepSE Group - Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations