Identifying the Weaknesses of UML Class Diagrams during Data Model Comprehension

  • Gabriele Bavota
  • Carmine Gravino
  • Rocco Oliveto
  • Andrea De Lucia
  • Genoveffa Tortora
  • Marcela Genero
  • José Antonio Cruz-Lemus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6981)


In this paper we present an experiment and two replications aimed at comparing the support provided by ER and UML class diagrams during comprehension activities by focusing on the single building blocks of the two notations. This kind of analysis can be used to identify weakness in a notation and/or justify the need of preferring ER or UML for data modeling. The results reveal that UML class diagrams are generally more comprehensible than ER diagrams, even if the former has some weaknesses related to three building blocks, i.e., multi-value attribute, composite attribute, and weak entity. These findings suggest that a UML class diagram extension should be considered to overcome these weaknesses and improve the comprehensibility of the notation.


Composite Attribute Comprehension Task Master Student Comprehension Level Comprehension Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Navathe, S.B.: Evolution of data modeling for databases. Commun. ACM 35, 112–123 (1992)CrossRefGoogle Scholar
  2. 2.
    Shoval, P., Frumermann, I.: OO and EER conceptual schemas: A comparison of user comprehension. Journal of Database Management 5(4), 28–38 (1994)Google Scholar
  3. 3.
    De Lucia, A., Gravino, C., Oliveto, R., Tortora, G.: Assessing the support of ER and UML class diagrams during maintenance activities on data models. In: 2th European Conference on Software Maintenance and Reengineering, CSMR 2008, pp. 173–182 (April 2008)Google Scholar
  4. 4.
    Lucia, A.D., Gravino, C., Oliveto, R., Tortora, G.: An experimental comparison of ER and UML class diagrams for data modelling. Empirical Software Engineering 15(5), 455–492 (2010)CrossRefGoogle Scholar
  5. 5.
    Shoval, P., Shiran, S.: Entity-relationship and object-oriented data modeling: an experimental comparison of design quality. Data Knowledge Engineering 21, 297–315 (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bock, D., Ryan, T.: Accuracy in modeling with extended entity relationship and object oriented data models. Journal of Database Management 4, 30–39 (1993)CrossRefGoogle Scholar
  7. 7.
    Palvia, P., Lio, C., To, P.: The impact of conceptual data models on end-user performance. Journal of Database Management 3(4), 4–15 (1992)CrossRefGoogle Scholar
  8. 8.
    Miller, G.A.: The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review 63, 81–97 (1956)CrossRefGoogle Scholar
  9. 9.
    Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., Ceccato, M.: How developers experience and ability influence web application comprehension tasks supported by UML stereotypes: A series of four experiments. IEEE Transactions on Software Engineering 36(1), 96–118 (2010)CrossRefGoogle Scholar
  10. 10.
    Oppenheim, A.N.: Questionnaire Design, Interviewing and Attitude Measurement. Pinter Publishers (1992)Google Scholar
  11. 11.
    Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)Google Scholar
  12. 12.
    Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links between code and documentation. IEEE Transactions on Software Engineering 28(10), 970–983 (2002)CrossRefGoogle Scholar
  13. 13.
    Bavota, G., et al.: UML vs ER - experimental material (2011),
  14. 14.
    Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, Chichester (1998)Google Scholar
  15. 15.
    Briand, L.C., Labiche, Y., Penta, M.D., Yan-Bondoc, H.D.: An experimental investigation of formality in UML-based development. IEEE Transactions on Software Engineering 31, 833–849 (2005)CrossRefGoogle Scholar
  16. 16.
    Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimentation in Software Engineering - An Introduction. Kluwer, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Arisholm, E., Sjoberg, D.I.K.: Evaluating the effect of a delegated versus centralized control style on the maintainability of object-oriented software. IEEE Transactions on Software Engineering 30, 521–534 (2004)CrossRefGoogle Scholar
  18. 18.
    Cruz-Lemus, J.A., Genero, M., Manso, M.E., Piattini, M.: Evaluating the effect of composite states on the understandability of UML statechart diagrams. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 113–125. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Genero, M., Cruz-Lemus, J.A., Caivano, D., Abrahão, S., Insfran, E., Carsí, J.Á.: Assessing the influence of stereotypes on the comprehension of UML sequence diagrams: A controlled experiment. In: Busch, C., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 280–294. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Staron, M., Kuzniarz, L., Thurn, C.: An empirical assessment of using stereotypes to improve reading techniques in software inspections. In: Proceedings of the Third Workshop on Software Quality, 3-WoSQ, pp. 1–7. ACM, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gabriele Bavota
    • 1
  • Carmine Gravino
    • 1
  • Rocco Oliveto
    • 2
  • Andrea De Lucia
    • 1
  • Genoveffa Tortora
    • 1
  • Marcela Genero
    • 3
  • José Antonio Cruz-Lemus
    • 3
  1. 1.Software Engineering LabUniversity of SalernoFiscianoItaly
  2. 2.STAT DepartementUniversity of MolisePescheItaly
  3. 3.Dep. of Technologies and Information SystemsUniversity of CastillaLa ManchaSpain

Personalised recommendations