Mining Classification Rules without Support: an Anti-monotone Property of Jaccard Measure

  • Yannick Le Bras
  • Philippe Lenca
  • Stéphane Lallich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6926)

Abstract

We propose a general definition of anti-monotony, and study the anti-monotone property of the Jaccard measure for classification rules. The discovered property can be inserted in an Apriori-like algorithm and can prune the search space without any support constraint. Moreover, the algorithm is complete since, it outputs all interesting rules with respect to the measure of Jaccard. The proposed pruning strategy can then be used to efficiently find nuggets of knowledge.

Keywords

Classification rules anti-monotony property Jaccard Measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imieliski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) ACM SIGMOD International Conference on Management of Data, pp. 207–216. ACM Press, New York (1993)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) 20th International Conference on Very Large Data Bases, pp. 478–499. Morgan Kaufmann, San Francisco (1994)Google Scholar
  3. 3.
    Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
  4. 4.
    Azevedo, P., Jorge, A.: Comparing rule measures for predictive association rules. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 510–517. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bahri, E., Lallich, S.: FCP-Growth: Class itemsets for class association rules. In: International Florida Intelligence Research Society Conference. AAAI Press, Menlo Park (2009)Google Scholar
  6. 6.
    Borgelt, C.: Efficient implementations of apriori and eclat. In: Workshop on Frequent Item Set Mining Implementations. CEUR Workshop Proceedings 90 (2003)Google Scholar
  7. 7.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM Computing Surveys 38(3, Article 9) (2006)Google Scholar
  8. 8.
    Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) ACM SIGMOD International Conference on Management of Data, pp. 1–12. ACM, New York (2000)Google Scholar
  10. 10.
    Hébert, C., Crémilleux, B.: A unified view of objective interestingness measures. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 533–547. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  12. 12.
    Jalali-Heravi, M., Zaïane, O.R.: A study on interestingness measures for associative classifiers. In: 25th ACM Symposium on Applied Computing, SAC 2010, pp. 1039–1046. ACM, New York (2010)CrossRefGoogle Scholar
  13. 13.
    Jovanoski, V., Lavrac, N.: Classification rule learning with apriori-c. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 44–135. Springer, Heidelberg (2001)Google Scholar
  14. 14.
    Le Bras, Y., Lenca, P., Lallich, S.: On optimal rule mining: A framework and a necessary and sufficient condition of antimonotonicity. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 705–712. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Le Bras, Y., Lenca, P., Lallich, S.: Mining interesting rules without support requirement: a general universal existential upward closure property. Annals of Information Systems 8(Part 2), 75–98 (2010), 8232CrossRefGoogle Scholar
  16. 16.
    Le Bras, Y., Lenca, P., Moga, S., Lallich, S.: All-monotony: A generalization of the all-confidence antimonotony. In: 4th International Conference on Machine Learning and Applications, pp. 759–764 (2009)Google Scholar
  17. 17.
    Le Bras, Y., Meyer, P., Lenca, P., Lallich, S.: A robustness measure of association rules. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6322, pp. 227–242. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: On selecting interestingness measures for association rules: user oriented description and multiple criteria decision aid. European Journal of Operational Research 184(2), 610–626 (2008)CrossRefMATHGoogle Scholar
  19. 19.
    Li, J.: On optimal rule discovery. IEEE Transactions on Knowledge and Data Engineering 18(4), 460–471 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, J., Fu, A.W.-C., He, H., Chen, J., Jin, H., McAullay, D., Williams, G., Sparks, R., Kelman, C.: Mining risk patterns in medical data. In: Grossman, R., Bayardo, R.J., Bennett, K.P. (eds.) 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 770–775. ACM, New York (2005)Google Scholar
  21. 21.
    Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Agrawal, R., Stolorz, P.E., Piatetsky-Shapiro, G. (eds.) 4th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 80–86. AAAI Press, Menlo Park (1998)Google Scholar
  22. 22.
    Morishita, S., Sese, J.: Transversing itemset lattices with statistical metric pruning. In: 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 226–236. ACM, New York (2000)Google Scholar
  23. 23.
    Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained association rules. In: Haas, L.M., Tiwary, A. (eds.) ACM SIGMOD International Conference on Management of Data, pp. 13–24. ACM Press, New York (1998)Google Scholar
  24. 24.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Information Systems 24(1), 25–46 (1999)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Savasere, A., Omiecinski, E., Navathe, S.B.: An efficient algorithm for mining association rules in large databases. In: Dayal, U., Gray, P.M.D., Nishio, S. (eds.) 21th International Conference on Very Large Data Bases, pp. 432–444. Morgan Kaufmann, San Francisco (1995)Google Scholar
  26. 26.
    Segond, M., Borgelt, C.: Item set mining based on cover similarity. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 493–505. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Suzuki, E.: Pitfalls for categorizations of objective interestingness measures for rule discovery. In: Gras, R., Suzuki, E., Guillet, F., Spagnolo, F. (eds.) Statistical Implicative Analysis, Theory and Applications. SCI, vol. 127, pp. 383–395. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right objective measure for association analysis. Information Systems 4(29), 293–313 (2004)CrossRefGoogle Scholar
  29. 29.
    Wang, K., He, Y., Cheung, D.W.: Mining confident rules without support requirement. In: 10th International Conference on Information and Knowledge Management, pp. 89–96. ACM, New York (2001)Google Scholar
  30. 30.
    Xiong, H., Tan, P.-N., Kumar, V.: Mining strong affinity association patterns in data sets with skewed support distribution. In: 3rd IEEE International Conference on Data Mining, pp. 387–394. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  31. 31.
    Yao, Y., Chen, Y., Yang, X.: A measurement-theoretic foundation for rule interestingness evaluation. In: Workshop on Foundations and New Directions in Data Mining in the 3rd IEEE International Conference on Data Mining, pp. 221–227. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  32. 32.
    Zaki, M.J.: Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering 12(3), 372–390 (2000)CrossRefGoogle Scholar
  33. 33.
    Zaki, M.J.: Mining non-redundant association rules. Data Mining and Knowledge Discovery 9(3), 223–248 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yannick Le Bras
    • 1
    • 3
  • Philippe Lenca
    • 1
    • 3
  • Stéphane Lallich
    • 2
  1. 1.UMR CNRS 3192 Lab-STICCInstitut Telecom; Telecom BretagneFrance
  2. 2.Laboratoire ERICUniversité de LyonLyon 2France
  3. 3.Université européenne de BretagneFrance

Personalised recommendations