How to Become a Group Leader? or Modeling Author Types Based on Graph Mining

  • George Tsatsaronis
  • Iraklis Varlamis
  • Sunna Torge
  • Matthias Reimann
  • Kjetil Nørvåg
  • Michael Schroeder
  • Matthias Zschunke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6966)

Abstract

Bibliographic databases are a prosperous field for data mining research and social network analysis. The representation and visualization of bibliographic databases as graphs and the application of data mining techniques can help us uncover interesting knowledge regarding how the publication records of authors evolve over time. In this paper we propose a novel methodology to model bibliographical databases as Power Graphs, and mine them in an unsupervised manner, in order to learn basic author types and their properties through clustering. The methodology takes into account the evolution of the co-authorship information, the volume of published papers over time, as well as the impact factors of the venues hosting the respective publications. As a proof of concept of the applicability and scalability of our approach, we present experimental results in the DBLP data.

Keywords

Power Graph Analysis Authors’ Clustering Graph Mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: Exploring the computing literature using temporal graph visualization. In: Visualization and Data Analysis, pp. 45–56 (2003)Google Scholar
  2. 2.
    Ke, W., Borner, K., Viswanath, L.: Major information visualization authors, papers and topics in the acm library. In: INFOVIS, pp. 216.1–216.9 (2004)Google Scholar
  3. 3.
    Li, X., Foo, C., Tew, K., Ng, S.: Searching for rising stars in bibliography networks. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 288–292. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Nascimento, M.A., Sander, J., Pound, J.: Analysis of sigmod’s co-authorship graph. SIGMOD Rec. 32, 8–10 (2003)CrossRefGoogle Scholar
  5. 5.
    Royer, L., Reimann, M., Andreopoulos, B., Schroeder, M.: Unraveling protein networks with power graph analysis. PLoS Computational Biology 4(7) (2008)Google Scholar
  6. 6.
    Smeaton, A.F., Keogh, G., Gurrin, C., McDonald, K., Sødring, T.: Analysis of papers from twenty-five years of sigir conferences: what have we been doing for the last quarter of a century? SIGIR Forum 36, 39–43 (2002)CrossRefGoogle Scholar
  7. 7.
    Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In: KDD Workshop on Text Mining, pp. 109–110 (2000)Google Scholar
  8. 8.
    Sun, Y., Wu, T., Yin, Z., Cheng, H., Han, J., Yin, X., Zhao, P.: Bibnetminer: mining bibliographic information networks. In: SIGMOD 2008, pp. 1341–1344. ACM, New York (2008)Google Scholar
  9. 9.
    Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: KDD, pp. 990–998 (2008)Google Scholar
  10. 10.
    Wang, C., Han, J., Jia, Y., Tang, J., Zhang, D., Yu, Y., Guo, J.: Mining advisor-advisee relationships from research publication networks. In: KDD, pp. 203–212 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • George Tsatsaronis
    • 1
  • Iraklis Varlamis
    • 2
  • Sunna Torge
    • 1
  • Matthias Reimann
    • 1
  • Kjetil Nørvåg
    • 3
  • Michael Schroeder
    • 1
  • Matthias Zschunke
    • 1
  1. 1.Biotechnology Center (BIOTEC)Technische Universität DresdenGermany
  2. 2.Dept. of Informatics and TelematicsHarokopio University of AthensGreece
  3. 3.Dept. of Computer and Information ScienceNTNUNorway

Personalised recommendations