Advertisement

Search Behavior-Driven Training for Result Re-Ranking

  • Giorgos Giannopoulos
  • Theodore Dalamagas
  • Timos Sellis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6966)

Abstract

In this paper we present a framework for improving the ranking learning process, taking into account the implicit search behaviors of users. Our approach is query-centric. That is, it examines the search behaviors induced by queries and groups together queries with similar such behaviors, forming search behavior clusters. Then, it trains multiple ranking functions, each one corresponding to one of these clusters. The trained models are finally combined to re-rank the results of each new query, taking into account the similarity of the query with each cluster. The main idea is that similar search behaviors can be detected and exploited for result re-ranking by analysing results into feature vectors, and clustering them. The experimental evaluation shows that our method improves the ranking quality of a state of the art ranking model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference, pp. 133–142 (2002)Google Scholar
  2. 2.
    Qin, T., Liu, T.-Y., Xu, J., Li, H.: LETOR: A Benchmark Collection for Research on Learning to Rank for Information Retrieval. Information Retrieval Journal (2010)Google Scholar
  3. 3.
    Radlinski, F., Joachims, T.: Query chains: Learning to rank from implicit feedback. In: Proceedings of the Eleventh ACM SIGKDD International Conference, pp. 239–248 (2005)Google Scholar
  4. 4.
    Haveliwala, T.-H.: Topic-sensitive PageRank. In: Proceedings of the 11th International Conference on World Wide Web, pp. 517–526 (2002)Google Scholar
  5. 5.
    Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 271–279 (2003)Google Scholar
  6. 6.
    Rohini, U., Ambati, V.: Improving Re-ranking of Search Results Using Collaborative Filtering. In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.) AIRS 2006. LNCS, vol. 4182, pp. 205–216. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Chirita, P.-A., Firan, C.-S., Nejdl, W.: Summarizing local context to personalize global web search. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 287–296 (2006)Google Scholar
  8. 8.
    Tan, B., Shen, X., Zhai, C.: Mining long-term search history to improve search accuracy. In: Proceedings of the 12th ACM SIGKDD International Conference, pp. 718–723 (2006)Google Scholar
  9. 9.
    Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user profile constructed without any effort from users. In: Proceedings of the 13th International Conference on World Wide Web, pp. 675–684 (2004)Google Scholar
  10. 10.
    Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit feedback. In: Proceedings of the 28th Annual International ACM SIGIR Conference, pp. 43–50 (2005)Google Scholar
  11. 11.
    Qin, T., Zhang, X.-D., Wang, D.-S., Liu, T.-Y., Lai, W., Li, H.: Ranking with multiple hyperplanes. In: Proceedings of the 30th Annual International ACM SIGIR Conference, pp. 279–286 (2007)Google Scholar
  12. 12.
    Teevan, J., Dumais, S.-T., Liebling, D.-J.: To Personalize or Not to Personalize: Modeling Queries with Variation in User Intent. In: Proceedings of the 31st Annual International ACM SIGIR Conference, pp. 163–170 (2008)Google Scholar
  13. 13.
    Dou, Z., Song, R., Wen, J.-R., Yuan, X.: Evaluating the Effectiveness of Personalized Web Search. IEEE Transactions on Knowledge and Data Engineering 21, 1178–1190 (2008)Google Scholar
  14. 14.
    Zheng, Z., Chen, K., Sun, G., Zha, H.: A regression framework for learning ranking functions using relative relevance judgments. In: Proceedings of the 30th Annual International ACM SIGIR Conference, pp. 287–294 (2007)Google Scholar
  15. 15.
    Kim, J.-W., Candan, K.-S.: Skip-and-prune: cosine-based top-k query processing for efficient context-sensitive document retrieval. In: Proceedings of the 35th SIGMOD International Conference, pp. 115–126 (2009)Google Scholar
  16. 16.
    Chu, W., Keerthi, S.-S.: Support Vector Ordinal Regression. Neural Computation 19, 792–815 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cao, Y., Xu, J., Liu, T.-Y., Li, H., Huang, Y., Hon, H.-W.: Adapting ranking svm to document retrieval. In: Proceedings of the 29th Annual International ACM SIGIR Conference, pp. 186–193 (2006)Google Scholar
  18. 18.
    Giannopoulos, G., Dalamagas, T., Sellis, T.: Collaborative Ranking Function Training for Web Search Personalization. In: Proceedings of the 3rd International Workshop PersDB 2009 (2009)Google Scholar
  19. 19.
    Zhao, Y., Karypis, G.: Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning 55(3), 311–331 (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Giorgos Giannopoulos
    • 1
    • 2
  • Theodore Dalamagas
    • 2
  • Timos Sellis
    • 1
    • 2
  1. 1.School of ECENTUAthensGreece
  2. 2.IMIS Institute“Athena” Research CenterGreece

Personalised recommendations