Interactive Vocabulary Alignment

  • Jacco van Ossenbruggen
  • Michiel Hildebrand
  • Victor de Boer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6966)

Abstract

In many heritage institutes, objects are routinely described using terms from predefined vocabularies. When object collections need to be merged or linked, the question arises how those vocabularies relate. In practice it often unclear for data providers how well alignment tools will perform on their specific vocabularies. This creates a bottleneck to align vocabularies, as data providers want to have tight control over the quality of their data. We will discuss the key limitations of current tools in more detail and propose an alternative approach. We will show how this approach has been used in two alignment use cases, and demonstrate how it is currently supported by our Amalgame alignment platform.

Keywords

Alignment Tool Data Provider Target Concept Ontology Match Simple Knowledge Organization System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Assem, M., Gangemi, A., Schreiber, G.: Conversion of WordNet to a standard RDF/OWL representation. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC 2006), Genoa, Italy (May 2006), http://www.cs.vu.nl/~mark/papers/Assem06a.pdf
  2. 2.
    Doerr, M.: Semantic problems of thesaurus mapping. J. Digit. Inf. 1(8) (2001)Google Scholar
  3. 3.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg, (DE) (2007)MATHGoogle Scholar
  4. 4.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. Language, Speech, and Communication Series. MIT Press, Cambridge (1998)MATHGoogle Scholar
  5. 5.
    van Hage, W.R., Isaac, A., Aleksovski, Z.: Sample evaluation of ontology-matching systems. In: Garcia-Castro, R., Vrandecic, D., Gómez-Pérez, A., Sure, Y., Huang, Z. (eds.) EON. CEUR Workshop Proceedings, vol. 329, pp. 41–50. CEUR-WS.org (2007)Google Scholar
  6. 6.
    Miles, A., Bechhofer, S.: Skos simple knowledge organization system reference. W3C Recommendation (August 18 (2009), http://www.w3.org/TR/skos-reference/
  7. 7.
    Tordai, A., van Ossenbruggen, J.R., Ghazvinian, A., Musen, M.A., Noy, N.F.: Lost In Translation? Empirical Analysis Of Mapping Compositions For Large Ontologies. In: Proceedings of 5th International Workshop on Ontology Matching 2010. CEUR-WS (November 2010)Google Scholar
  8. 8.
    Tordai, A., van Ossenbruggen, J.R., Schreiber, G., Wielinga, B.: Aligning Large SKOS-Like Vocabularies. In: ESWC 2010. LNCS, vol. (7), pp. 198–212. Springer, Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-13486-9_14 Google Scholar
  9. 9.
    Tordai, A., van Ossenbruggen, J., Schreiber, G.: Combining vocabulary alignment techniques. In: K-CAP 2009: Proceedings of the Fifth International Conference on Knowledge Capture, pp. 25–32. ACM, New York (2009)Google Scholar
  10. 10.
    Vossen, P., Maks, I., Segers, R., van der Vliet, H.: Integrating lexical units, synsets and ontology in the Cornetto database. In: (ELRA), E.L.R.A. (ed.) Proceedings of the Sixth International Language Resources and Evaluation, LREC 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jacco van Ossenbruggen
    • 1
    • 2
  • Michiel Hildebrand
    • 1
  • Victor de Boer
    • 1
  1. 1.VU UniversityAmsterdamThe Netherlands
  2. 2.CWIAmsterdamThe Netherlands

Personalised recommendations