Query Operators Shown Beneficial for Improving Search Results

  • Gilles Hubert
  • Guillaume Cabanac
  • Christian Sallaberry
  • Damien Palacio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6966)


Search engines allow users to retrieve documents with respect to a given query. These provide advanced search options, such as query operators (e.g., +term, term^10). Previous work studied how query operators are employed by end-users. In this paper, we study the extent to which using query operators may lead to improved results, regardless of specific users. We hypothesize that the proper use of query operators improves search results. To validate this hypothesis, we present a methodology relying on standard IR test collections. We applied this methodology to TREC-7 and TREC-8 test collections with five IR models implemented in the Terrier search engine. Experiments show that queries enriched with operators give an improvement in effectiveness up to 35.1% over regular queries. This result suggests that end-users would benefit from using operators more often.


Information Retrieval Search Engine Query Operators Effectiveness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aula, A., Khan, R.M., Guan, Z.: How does search behavior change as search becomes more difficult? In: CHI 2010: Proceedings of the 28th International Conference on Human Factors in Computing Systems, pp. 35–44. ACM, New York (2010)Google Scholar
  2. 2.
    Buckley, C., Voorhees, E.M.: Retrieval System Evaluation. In: Voorhees and Harman [22], ch. 3, pp. 53–75Google Scholar
  3. 3.
    Croft, W.B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice. Addison-Wesley, Reading (2010)Google Scholar
  4. 4.
    Eastman, C.M., Jansen, B.J.: Coverage, relevance, and ranking: The impact of query operators on web search engine results. ACM Trans. Inf. Syst. 21(4), 383–411 (2003)CrossRefGoogle Scholar
  5. 5.
    Eastman, C.M., Jansen, B.J.: The appropriate (and inappropriate) use of query operators and their effect on web search results. Proceedings of the American Society for Information Science and Technology 41(1), 274–279 (2004)CrossRefGoogle Scholar
  6. 6.
    Gospodnetić, O., Hatcher, E.: Lucene in Action. Manning Publications (2005)Google Scholar
  7. 7.
    Harman, D.K.: The TREC Test Collections. In: Voorhees and Harman [22], ch. 2, pp. 21–53Google Scholar
  8. 8.
    Hölscher, C., Strube, G.: Web search behavior of internet experts and newbies. Comput. Netw. 33, 337–346 (2000)CrossRefGoogle Scholar
  9. 9.
    Jansen, B.J., Pooch, U.: A review of web searching studies and a framework for future research. J. Am. Soc. Inf. Sci. Technol. 52(3), 235–246 (2001)CrossRefGoogle Scholar
  10. 10.
    Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and analysis of user queries on the web. Inf. Process. Manage. 36(2), 207–227 (2000)CrossRefGoogle Scholar
  11. 11.
    Lucas, W., Topi, H.: Form and function: the impact of query term and operator usage on Web search results. J. Am. Soc. Inf. Sci. Technol. 53(2), 95–108 (2002)CrossRefGoogle Scholar
  12. 12.
    Ogilvie, P., Callan, J.P.: Experiments Using the Lemur Toolkit. In: TREC 2001: Proceedings of the 9th Text REtrieval Conference. NIST, Gaithersburg (2001)Google Scholar
  13. 13.
    Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A high performance and scalable information retrieval platform. In: OSIR 2006: Proceedings of ACM SIGIR 2006 Workshop on Open Source Information Retrieval (2006)Google Scholar
  14. 14.
    Palacio, D., Cabanac, G., Sallaberry, C., Hubert, G.: Measuring Effectiveness of Geographic IR Systems in Digital Libraries: Evaluation Framework and Case Study. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 340–351. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Purday, J.: Think culture: from concept to construction. The Electronic Library 27(6), 919–937 (2009)CrossRefGoogle Scholar
  16. 16.
    Sanderson, M.: Test collection based evaluation of information retrieval systems. Found. Trends Inf. Retr. 4(4), 247–375 (2010)CrossRefMATHGoogle Scholar
  17. 17.
    Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a very large web search engine query log. SIGIR Forum 33(1), 6–12 (1999)CrossRefGoogle Scholar
  18. 18.
    Spink, A., Wolfram, D., Jansen, M.B.J., Saracevic, T.: Searching the web: the public and their queries. J. Am. Soc. Inf. Sci. Technol. 52(3), 226–234 (2001)CrossRefGoogle Scholar
  19. 19.
    Tukey, J.W.: Exploratory data analysis. Addison-Wesley, Reading (1977)MATHGoogle Scholar
  20. 20.
    Voorhees, E.M., Harman, D.K.: Overview of the Seventh Text REtrieval Conference (TREC-7). In: TREC-7: Proceedings of the 7th Text REtrieval Conference, pp. 1–23 (1998)Google Scholar
  21. 21.
    Voorhees, E.M., Harman, D.K.: Overview of the Seventh Text REtrieval Conference (TREC-8). In: TREC-8: Proceedings of the 8th Text REtrieval Conference, pp. 1–23 (1999)Google Scholar
  22. 22.
    Voorhees, E.M., Harman, D.K.: TREC: Experiment and Evaluation in Information Retrieval. MIT Press, Cambridge (2005)Google Scholar
  23. 23.
    White, R.W., Morris, D.: Investigating the querying and browsing behavior of advanced search engine users. In: SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR Conference, pp. 255–262. ACM, New York (2007)Google Scholar
  24. 24.
    Williamson, D.F., Parker, R.A., Kendrick, J.S.: The box plot: A simple visual method to interpret data. Ann. Intern. Med. 110(11), 916–921 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gilles Hubert
    • 1
  • Guillaume Cabanac
    • 1
  • Christian Sallaberry
    • 2
  • Damien Palacio
    • 2
  1. 1.Université de Toulouse, IRIT UMR 5505 CNRSToulouse cedex 9France
  2. 2.Université de Pau et des Pays de l’Adour, LIUPPA ÉAPau cedexFrance

Personalised recommendations