Speedy Local Search for Semi-Supervised Regularized Least-Squares

  • Fabian Gieseke
  • Oliver Kramer
  • Antti Airola
  • Tapio Pahikkala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7006)

Abstract

In real-world machine learning scenarios, labeled data is often rare while unlabeled data can be obtained easily. Semi-supervised approaches aim at improving the prediction performance by taking both the labeled as well as the unlabeled part of the data into account. In particular, semi-supervised support vector machines favor decision hyperplanes which lie in a “low-density area” induced by the unlabeled patterns (while still considering the labeled part of the data). The associated optimization problem, however, is of combinatorial nature and, hence, difficult to solve. In this work, we present an efficient implementation of a simple local search strategy that is based on matrix updates of the intermediate candidate solutions. Our experiments on both artificial and real-world data sets indicate that the approach can successfully incorporate unlabeled data in an efficient manner.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adankon, M., Cheriet, M., Biem, A.: Semisupervised least squares support vector machine. IEEE Transactions on Neural Networks 20(12), 1858–1870 (2009)CrossRefGoogle Scholar
  2. 2.
    Bie, T.D., Cristianini, N.: Convex methods for transduction. In: Adv. in Neural Information Proc. Systems, vol. 16, pp. 73–80. MIT Press, Cambridge (2004)Google Scholar
  3. 3.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Uni. Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  4. 4.
    Chapelle, O., Chi, M., Zien, A.: A continuation method for semi-supervised SVMs. In: Proc. Int. Conf. on Machine Learning, pp. 185–192 (2006)Google Scholar
  5. 5.
    Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cambridge (2006)Google Scholar
  6. 6.
    Chapelle, O., Sindhwani, V., Keerthi, S.S.: Branch and bound for semi-supervised support vector machines. In: Adv. in Neural Information Proc. Systems, vol. 19, pp. 217–224. MIT Press, Cambridge (2007)Google Scholar
  7. 7.
    Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In: Proc. 10th Int. Workshop on Artificial Intell. and Statistics, pp. 57–64 (2005)Google Scholar
  8. 8.
    Collobert, R., Sinz, F., Weston, J., Bottou, L.: Trading convexity for scalability. In: Proc. International Conference on Machine Learning, pp. 201–208 (2006)Google Scholar
  9. 9.
    Gieseke, F., Pahikkala, T., Kramer, O.: Fast evolutionary maximum margin clustering. In: Proc. Int. Conf. on Machine Learning, pp. 361–368 (2009)Google Scholar
  10. 10.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Heidelberg (2009)CrossRefMATHGoogle Scholar
  11. 11.
    Joachims, T.: Transductive inference for text classification using support vector machines. In: Proc. Int. Conf. on Machine Learning, pp. 200–209 (1999)Google Scholar
  12. 12.
    Rifkin, R., Yeo, G., Poggio, T.: Regularized least-squares classification. In: Adv. in Learning Theory: Methods, Models and Applications. IOS Press, Amsterdam (2003)Google Scholar
  13. 13.
    Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 416–426. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Sindhwani, V., Keerthi, S., Chapelle, O.: Deterministic annealing for semi-supervised kernel machines. In: Proc. Int. Conf. on Machine Learning, pp. 841–848 (2006)Google Scholar
  15. 15.
    Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008)MATHGoogle Scholar
  16. 16.
    Vapnik, V., Sterin, A.: On structural risk minimization or overall risk in a problem of pattern recognition. Aut. and Remote Control 10(3), 1495–1503 (1977)MATHGoogle Scholar
  17. 17.
    Zhang, K., Kwok, J.T., Parvin, B.: Prototype vector machine for large scale semi-supervised learning. In: Proceedings of the International Conference on Machine Learning (2009)Google Scholar
  18. 18.
    Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning. Morgan and Claypool (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fabian Gieseke
    • 1
  • Oliver Kramer
    • 1
  • Antti Airola
    • 2
  • Tapio Pahikkala
    • 2
  1. 1.Department InformatikCarl von Ossietzky Universitat OldenburgOldenburgGermany
  2. 2.Turku Centre for Computer Science, Department of Information TechnologyUniversity of TurkuTurkuFinland

Personalised recommendations