Hierarchically Structured Energy Markets as Novel Smart Grid Control Approach

  • Jörg Lässig
  • Benjamin Satzger
  • Oliver Kramer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7006)


The paper investigates the self-stabilization of hierarchically structured markets. We propose a new approach that is motivated by the physical structure of the energy grid and generalizes classical market structures in a natural way. Hierarchical markets have several advantages compared to monolithic markets, i.e., improved reliability and scalability, locality of information, and proximity of energy production and consumption. By simulating scenarios based on real world consumption and production data including households, different renewable energy sources, and other plant types, we present a proof-of-concept of stability of the hierarchical markets in various simulations.


smart grid hierarchical markets simulation agents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barroso, L.A., Rosenblatt, J., Guimaraes, A., Bezerra, B., Pereira, M.V.: Auctions of contracts and energy call options to ensure supply adequacy in the second stage of the Brazilian power sector reform. In: Power Engineering Society General Meeting, pp. 1–8. IEEE, Los Alamitos (2006)Google Scholar
  2. 2.
    Borenstein, S., Jaske, M., Rosenfeld, A.: Dynamic pricing, advanced metering, and demand response in electricity markets. Center for the Study of Energy Markets, UC Berkeley (2002), (Retrieved from 2002)Google Scholar
  3. 3.
    Chen, X., Xie, J.: Optimal bidding strategies for load server entities in double-sided auction electricity markets with risk management. In: PMAPS 2006, pp. 1–6. IEEE, Los Alamitos (2006)Google Scholar
  4. 4.
    Fulp, E., Reeves, D.: Optimal provisioning and pricing of internet differentiated services in hierarchical markets. In: Lorenz, P. (ed.) ICN 2001. LNCS, vol. 2093, pp. 409–418. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Hines, P., Apt, J., Talukdar, S.: Large blackouts in north america: Historical trends and policy implications. Energy Policy 37(12), 5249–5259 (2009)CrossRefGoogle Scholar
  6. 6.
    Hobbs, B.F., Rothkopf, M.H., Hyde, L.C., O’Neill, R.P.: Evaluation of a truthful revelation auction in the context of energy markets with nonconcave benefits. Journal of Regulatory Economics 18(1), 5–32 (2000)CrossRefGoogle Scholar
  7. 7.
    Li, J., Poulton, G., James, G.: Agent-Based Distributed Energy Management. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 569–578. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Kian Jr., A.R., Cruz, J.B., Thomas, R.J.: Bidding strategies in oligopolistic dynamic electricity double-sided auctions. IEEE Transactions on Power Systems 20(1), 50–58 (2005)CrossRefGoogle Scholar
  9. 9.
    Kramer, O., Satzger, B., Lässig, J.: Power Prediction in Smart Grids with Evolutionary Local Kernel Regression. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 262–269. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Mantegna, R.N.: Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems 11(1), 193–197 (1999)CrossRefGoogle Scholar
  11. 11.
    NAHB Research Center. Review of residential electrical energy use data, (Retrieved from 2001)
  12. 12.
    Nanduri, V., Das, T.K.: A reinforcement learning model to assess market power under auction-based energy pricing. IEEE Transactions on Power Systems 22(1), 85–95 (2007)CrossRefGoogle Scholar
  13. 13.
    National Renewable Energy Laboratory. Homepage, (Retrieved from 2010)
  14. 14.
    National Wind Technology Center. Homepage, (Retrieved from 2010)
  15. 15.
    Overbye, T.J., Cheng, X., Sun, Y.: A comparison of the ac and dc power flow models for lmp calculations. In: HICSS 2004: Track 2, p. 20047.1. IEEE, Washington, DC, USA (2004)Google Scholar
  16. 16.
    Pipattanasomporn, M., Feroze, H., Rahman, S.: Multi-agent systems in a distributed smart grid: Design and implementation. In: PSCE 2009, pp. 1–8. IEEE, Los Alamitos (2009)Google Scholar
  17. 17.
    Praca, I., Ramos, C., Vale, Z., Cordeiro, M.: Mascem: A Multiagent System That Simulates Competitive Electricity Markets. IEEE Intelligent Systems 18, 54–60 (2003)CrossRefGoogle Scholar
  18. 18.
    Tsoukalas, L.H., Gao, R.: From smart grids to an energy internet: Assumptions, architectures and requirements. In: DRPT 2008, pp. 94–98. IEEE, Los Alamitos (2008)Google Scholar
  19. 19.
    Varga, L.Z., Jennings, N.R., Cockburn, D.: Integrating intelligent systems into a cooperating community for electricity distribution management. Expert Systems with Applications 7(4), 563–579 (1994)CrossRefGoogle Scholar
  20. 20.
    Vytelingum, P., Cliff, D., Jennings, N.R.: Strategic bidding in continuous double auctions. Artificial Intelligence 172(14), 1700–1729 (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Vytelingum, P., Ramchurn, S.D., Voice, T.D., Rogers, A., Jennings, N.R.: Trading agents for the smart electricity grid. In: International Foundation for Autonomous Agents and Multiagent Systems, AAMAS 2010, pp. 897–904 (2010)Google Scholar
  22. 22.
    Vytelingum, P., Voice, T.D., Ramchurn, S.D., Rogers, A., Jennings, N.R.: Agent-based micro-storage management for the smart grid. In: International Foundation for Autonomous Agents and Multiagent Systems, AAMAS 2010, pp. 39–46 (2010)Google Scholar
  23. 23.
    Weron, R.: Energy price risk management. Physica A: Statistical Mechanics and its Applications 285(1-2), 127–134 (2000)CrossRefzbMATHGoogle Scholar
  24. 24.
    Xiong, G., Okuma, S., Fujita, H.: Multi-agent based experiments on uniform price and pay-as-bid electricity auction markets. In: DRPT 2004, pp. 72–76. IEEE, Los Alamitos (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jörg Lässig
    • 1
  • Benjamin Satzger
    • 2
  • Oliver Kramer
    • 3
  1. 1.Enterprise Application Development GroupUniversity of Applied Sciences Zittau/GörlitzGermany
  2. 2.Distributed Systems GroupVienna University of TechnologyAustria
  3. 3.Algorithms GroupICSI BerkeleyUSA

Personalised recommendations