An Interaction Net Implementation of Closed Reduction

  • Ian Mackie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5836)

Abstract

Closed reduction is a very efficient reduction strategy for the lambda calculus, which is explained using a simple form of explicit substitutions. This paper introduces this strategy, and gives an implementation as a system of interaction nets. We obtain one of the most efficient implementations of this kind to date.

Keywords

Normal Form Free Variable Close Reduction Linear Logic Active Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asperti, A., Giovannetti, C., Naletto, A.: The bologna optimal higher-order machine. Journal of Functional Programming 6(6), 763–810 (1996)CrossRefMATHGoogle Scholar
  2. 2.
    Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming Languages. Cambridge Tracts in Theoretical Computer Science, vol. 45. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  3. 3.
    Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, 2nd edn. Studies in Logic and the Foundations of Mathematics, vol. 103. North-Holland Publishing Company, Amsterdam (1984) (revised edition)MATHGoogle Scholar
  4. 4.
    Fernández, M., Mackie, I.: Closed reductions in the λ-calculus. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 220–234. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Fernández, M., Mackie, I., Sinot, F.-R.: Closed reduction: explicit substitutions without alpha conversion. Mathematical Structures in Computer Science 15(2), 343–381 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Girard, J.-Y.: Geometry of interaction 1: Interpretation of System F. In: Ferro, R., Bonotto, C., Valentini, S., Zanardo, A. (eds.) Logic Colloquium 1988. Studies in Logic and the Foundations of Mathematics, vol. 127, pp. 221–260. North Holland Publishing Company, Amsterdam (1989)Google Scholar
  7. 7.
    Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction. In: Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL 1992), pp. 15–26. ACM Press, New York (1992)Google Scholar
  8. 8.
    Gonthier, G., Abadi, M., Lévy, J.-J.: Linear logic without boxes. In: Proceedings of the 7th IEEE Symposium on Logic in Computer Science (LICS 1992), pp. 223–234. IEEE Press, Los Alamitos (1992)Google Scholar
  9. 9.
    Lafont, Y.: Interaction nets. In: Proceedings of the 17th ACM Symposium on Principles of Programming Languages (POPL 1990), pp. 95–108. ACM Press, New York (1990)Google Scholar
  10. 10.
    Lamping, J.: An algorithm for optimal lambda calculus reduction. In: Proceedings of the 17th ACM Symposium on Principles of Programming Languages (POPL 1990), pp. 16–30. ACM Press, New York (1990)Google Scholar
  11. 11.
    Lévy, J.-J.: Optimal reductions in the lambda calculus. In: Hindley, J.P., Seldin, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 159–191. Academic Press, London (1980)Google Scholar
  12. 12.
    Lippi, S.: λ-calculus left reduction with interaction nets. Mathematical Structures in Computer Science 12(6) (2002)Google Scholar
  13. 13.
    Mackie, I.: The Geometry of Implementation. PhD thesis, Department of Computing, Imperial College of Science, Technology and Medicine (September 1994)Google Scholar
  14. 14.
    Mackie, I.: YALE: Yet another lambda evaluator based on interaction nets. In: Proceedings of the 3rd International Conference on Functional Programming (ICFP 1998), pp. 117–128. ACM Press, New York (1998)Google Scholar
  15. 15.
    Mackie, I.: Interaction nets for linear logic. Theoretical Computer Science 247(1), 83–140 (2000)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mackie, I.: Efficient λ-evaluation with interaction nets. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 155–169. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Mackie, I., Pinto, J.S.: Encoding linear logic with interaction combinators. Information and Computation 176(2), 153–186 (2002)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Pinto, J.S.: Weak reduction and garbage collection in interaction nets. Electronic Notes in Theoretical Computer Science 84(4), 625–640 (2003)CrossRefMATHGoogle Scholar
  19. 19.
    Sinot, F.-R.: Call-by-name and call-by-value as token-passing interaction nets. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 386–400. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ian Mackie
    • 1
  1. 1.LIX, CNRS UMR 7161École PolytechniquePalaiseau CedexFrance

Personalised recommendations