Noncollective Communicator Creation in MPI

  • James Dinan
  • Sriram Krishnamoorthy
  • Pavan Balaji
  • Jeff R. Hammond
  • Manojkumar Krishnan
  • Vinod Tipparaju
  • Abhinav Vishnu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6960)

Abstract

MPI communicators abstract communication operations across application modules, facilitating seamless composition of different libraries. In addition, communicators provide the ability to form groups of processes and establish multiple levels of parallelism. Traditionally, communicators have been collectively created in the context of the parent communicator. The recent thrust toward systems at petascale and beyond has brought forth new application use cases, including fault tolerance and load balancing, that highlight the ability to construct an MPI communicator in the context of its new process group as a key capability. However, it has long been believed that MPI is not capable of allowing the user to form a new communicator in this way. We present a new algorithm that allows the user to create such flexible process groups using only the functionality given in the current MPI standard. We explore performance implications of this technique and demonstrate its utility for load balancing in the context of a Markov chain Monte Carlo computation. In comparison with a traditional collective approach, noncollective communicator creation enables a 30% improvement in execution time through asynchronous load balancing.

References

  1. 1.
    MPICH2 Project Website (June 2011), http://www.mcs.anl.gov/research/projects/mpich2/
  2. 2.
    Dickson, A., Maienschein-Cline, M., Tovo-Dwyer, A., Hammond, J.R., Dinner, A.R.: Flow-dependent unfolding and refolding of an RNA by nonequilibrium umbrella sampling. ArXiv e-prints (1104.5180), cond–mat.stat–mech (April 2011)Google Scholar
  3. 3.
    Graham, R.L., Keller, R.: Dynamic communicators in MPI. In: Ropo, M., Westerholm, J., Dongarra, J. (eds.) PVM/MPI. LNCS, vol. 5759, pp. 116–123. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Gropp, W.D., Lusk, E.: Fault tolerance in MPI programs. International Journal of High Performance Computer Applications 18(3), 363–372 (2004)CrossRefGoogle Scholar
  5. 5.
    Kamiya, M., Hirata, S., Valiev, M.: Fast electron correlation methods for molecular clusters without basis set superposition errors. The Journal of Chemical Physics 128(7), 74103 (2008)CrossRefGoogle Scholar
  6. 6.
    MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2 (September 4, 2009)Google Scholar
  7. 7.
    Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library for distributed array libraries and compiler run-time systems. In: Rolim, J.D.P. (ed.) IPPS-WS 1999 and SPDP-WS 1999. LNCS, vol. 1586, pp. 533–546. Springer, Heidelberg (1999), doi:10.1007/BFb0097937CrossRefGoogle Scholar
  8. 8.
    Nieplocha, J., Krishamoorthy, S., Valiev, M., Krishnan, M., Palmer, B., Sadayappan, P.: Integrated data and task management for scientific applications. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 20–31. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., Aprà, E.: Advances, applications and performance of the global arrays shared memory programming toolkit. Int. J. High Perform. Comput. Appl. 20(2), 203–231 (2006)CrossRefGoogle Scholar
  10. 10.
    Schenter, G.K., Kathmann, S.M., Garrett, B.C.: Dynamical nucleation theory: A new molecular approach to vapor-liquid nucleation. Physical Review Letters 82(17), 3484 (1999)CrossRefGoogle Scholar
  11. 11.
    Windus, T.L., Kathmann, S.M., Crosby, L.D.: High performance computations using dynamical nucleation theory. Journal of Physics: Conference Series 125(1), 12017 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • James Dinan
    • 1
  • Sriram Krishnamoorthy
    • 2
  • Pavan Balaji
    • 1
  • Jeff R. Hammond
    • 1
  • Manojkumar Krishnan
    • 2
  • Vinod Tipparaju
    • 3
  • Abhinav Vishnu
    • 2
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.Pacific Northwest National LaboratoryRichlandUSA
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations