Advertisement

Heritability of White Matter Fiber Tract Shapes: A HARDI Study of 198 Twins

  • Yan Jin
  • Yonggang Shi
  • Shantanu H. Joshi
  • Neda Jahanshad
  • Liang Zhan
  • Greig I. de Zubicaray
  • Katie L. McMahon
  • Nicholas G. Martin
  • Margaret J. Wright
  • Arthur W. Toga
  • Paul M. Thompson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7012)

Abstract

Genetic analysis of diffusion tensor images (DTI) shows great promise in revealing specific genetic variants that affect brain integrity and connectivity. Most genetic studies of DTI analyze voxel-based diffusivity indices in the image space (such as 3D maps of fractional anisotropy) and overlook tract geometry. Here we propose an automated workflow to cluster fibers using a white matter probabilistic atlas and perform genetic analysis on the shape characteristics of fiber tracts. We apply our approach to large study of 4-Tesla high angular resolution diffusion imaging (HARDI) data from 198 healthy, young adult twins (age: 20-30). Illustrative results show heritability for the shapes of several major tracts, as color-coded maps.

Keywords

HARDI Tractography Image Registration White Matter Probabilistic Atlas Fiber Alignment Clustering Curve Matching Heritability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basser, P.J., et al.: MR Diffusion Tensor Spectroscopy and Imaging. Biophys. J. 66, 259–267 (1994)CrossRefGoogle Scholar
  2. 2.
    Chiang, M.C., et al.: Genetics of White Matter Development: A DTI Study of 705 Twins and Their Siblings Aged 12 to 29. NeuroImage 54, 2308–2317 (2011)CrossRefGoogle Scholar
  3. 3.
    Lee, A.D., et al.: Multivariate Variance-Components Analysis in DTI. In: The 2010 IEEE International Symposium on Biomedical Imaging (ISBI): from Nano to Macro, pp. 1157–1160. IEEE Press, Piscataway (2010)CrossRefGoogle Scholar
  4. 4.
    Lepore, N., et al.: A Multivariate Groupwise Genetic Analysis of White Matter Integrity using Orientation Distribution Functions. In: The 2010 Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Computational Diffusion MRI (CDMRI), Beijing, China, pp. 1–11 (2010)Google Scholar
  5. 5.
    Brouwer, R.M., et al.: Heritability of DTI and MTR in Nine-year-old Children. NeuroImage 53, 1085–1092 (2010)CrossRefGoogle Scholar
  6. 6.
    Tuch, D.S.: Q-Ball Imaging. Magn. Reson. Med. 52, 1358–1372 (2004)CrossRefGoogle Scholar
  7. 7.
    Leow, A.D., et al.: The Tensor Distribution Function. Magn. Reson. Med. 61, 205–214 (2009)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Diffusion Toolkit, http://trackvis.org/dtk/
  10. 10.
    Mori, S., et al.: Three-dimensional Tracking of Axonal Projections in the Brain by Magnetic Resonance Imaging. Ann. Neurol. 45, 265–269 (1999)CrossRefGoogle Scholar
  11. 11.
    Oishi, K., et al.: Atlas-based Whole Brain White Matter Analysis using Large Deformation Diffeomorphic Metric Mapping: Application to Normal Elderly and Alzheimer’s Disease Participants. NeuroImage 46, 486–499 (2009)CrossRefGoogle Scholar
  12. 12.
    Jenkinson, M., Smith, S.M.: A Global Optimisation Method for Robust Affine Registration of Brain Images. Medical Image Analysis 5, 143–156 (2001)CrossRefGoogle Scholar
  13. 13.
    Leow, A.D., et al.: Statistical Properties of Jacobian Maps and the Realization of Unbiased Large-deformation Nonlinear Image Registration. IEEE Trans. Med. Imaging 26, 822–832 (2007)CrossRefGoogle Scholar
  14. 14.
    Jin, Y., et al.: 3D Elastic Registration Improves HARDI-derived Fiber Alignment and Automated Tract Clustering. In: The 2011 IEEE International Symposium on Biomedical Imaging (ISBI): from Nano to Macro, pp. 822–826. IEEE Press, Piscataway (2011)CrossRefGoogle Scholar
  15. 15.
    Zhang, Y., et al.: Atlas-Guided Tract Reconstruction for Automated and Comprehensive Examination of the White Matter Anatomy. NeuroImage 52, 1289–1301 (2010)CrossRefGoogle Scholar
  16. 16.
    Joshi, S.H., et al.: Removing Shape-Preserving Transformations in Square-Root Elastic (SRE) Framework for Shape Analysis of Curves. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 387–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Joshi, S.H., et al.: A Novel Representation for Riemannian Analysis of Elastic Curves in Rn. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, Minnesota, USA, pp. 1–7 (2007)Google Scholar
  18. 18.
    Falconer, D., Mackay, T.F.: Introduction to Quantitative Genetics, 4th edn. Benjamin Cummings (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yan Jin
    • 1
  • Yonggang Shi
    • 1
  • Shantanu H. Joshi
    • 1
  • Neda Jahanshad
    • 1
  • Liang Zhan
    • 1
  • Greig I. de Zubicaray
    • 2
  • Katie L. McMahon
    • 2
  • Nicholas G. Martin
    • 3
  • Margaret J. Wright
    • 3
  • Arthur W. Toga
    • 1
  • Paul M. Thompson
    • 1
  1. 1.Laboratory of Neuro Imaging, Department of Neurology, School of MedicineUniversity of CaliforniaLos AngelesUSA
  2. 2.fMRI LaboratoryUniversity of QueenslandBrisbane St. LuciaAustralia
  3. 3.Queensland Institute of Medical ResearchHerstonAustralia

Personalised recommendations