Antimicrobial Activity of Silver and Copper Nanoparticles: Variation in Sensitivity Across Various Strains of Bacteria and Fungi

  • Suparna Mukherji
  • Jayesh Ruparelia
  • Shekhar Agnihotri
Chapter

Abstract

The antimicrobial activity of silver and copper nanoparticles is widely reported and is linked with ions that leach out from these nanoparticles. The activity is further enhanced due to their small size and high surface area to volume ratio which allows them to interact closely with microbial membranes. Most studies on antibacterial effects have been limited to one or a few strains and comparison across studies becomes difficult due to differences in the size and other characteristics of the nanoparticles and due to differences in the protocols followed in the various studies. The sensitivity in response to silver nanoparticles is seen to vary widely across various strains of Escherichia coli and Staphylococcus aureus. Most strains typically show greater sensitivity to silver compared to copper nanoparticles. Antifungal activity of silver nanoparticles has been found to be comparable to commercially available antifungal agents. Nanoparticles embedded/immobilized on supports may be better utilized for applications such as water disinfection. Such systems can promote a continuous release of Ag+ and Cu2+ ions in solution and thus promote disinfection while ensuring a low enough concentration to avoid deleterious effect on humans and other organisms in the ecosystem.

Keywords

Antimicrobial Activity Minimum Inhibitory Concentration Silver Nanoparticles Antifungal Activity Candida Albicans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abd El-Mohdy HL, Ghanem S (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res Taiwan 16:1–10. doi: 10.1007/s10965-008-9196-0 Google Scholar
  2. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharm 233:404–410. doi: 10.1016/j.taap.2008.09.015 Google Scholar
  3. An J, Wang D, Luo Q, Yuan X (2009) Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid. Mater Sci Eng C 29:1984–1989. doi: 10.1016/j.msec.2009.03.015 Google Scholar
  4. Asavavisithchai S, Oonpraderm A, Rungsardthong Ruktanonchai U (2010) The antimicrobial effect of open-cell silver foams. J Mater Sci: Mater Med 21:1329–1334. doi: 10.1007/s10856-009-3969-9 Google Scholar
  5. Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:1–8. doi: 10.1088/0957-4484/19/25/255102 Google Scholar
  6. Asharani PV, Kah Mun GL, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290. doi:  10.1021/nn800596w Google Scholar
  7. Barbucci R, Leone G, Magnani A, Montanaro L, Arciola CR, Peluso G, Petillo O (2002) Cu2+ and Ag1+ complexes with a hyaluron-based hydrogel, J Mater Chem 12:3084–3092. doi: 10.1039/b205320a Google Scholar
  8. Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell wall of Bacillus subtilis, J Bacteriol 141:876–887.Google Scholar
  9. Borkow G, Gabbay J (2009) Copper, An ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol 3:272–278.Google Scholar
  10. Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials, 23:887–892. doi: 10.1016/s0142-9612(01)00198-3 Google Scholar
  11. Brown IG (1993) Metal–ion implantation for large scale surface modification. J Vac Sci Technol A 11:1480–1485.Google Scholar
  12. Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794–801. doi: 10.1007/s11671-009-9316-8 Google Scholar
  13. Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960. doi: 10.1016/j.electacta.2005.04.071 Google Scholar
  14. Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Advan Technol 16:600–607. doi: 10.1002/pat.630 Google Scholar
  15. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma surface modification of biomaterials. Mater Sci Eng Res 36:143–206. doi: 10.1016/s0927-796x(02)00004-9 Google Scholar
  16. Chudasama B, Vala, AK, Andhariya N, Upadhyay RV, Mehta RV (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2: 955–965. doi: 10.1007/s12274-009-9098-4 Google Scholar
  17. Chudasama B, Vala,AK, Andhariya N, Mehta RV, Upadhyay RV (2010) Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities. J Nanopart Res 12:1677–1685. doi:  10.1007/s11051-009-9845-1 Google Scholar
  18. Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Giorgio P (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85:2417–2419. doi: 10.1063/1.1794381 Google Scholar
  19. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Giorgio Zambonin P, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties, Chem Mater 17:5255–5262. doi: 10.1021/cm0505244 Google Scholar
  20. Costa CS, Ronconi JVV, Daufenbach JF, Gonçalves CL, Rezin GT, Streck EL, Marques da Silva PM (2010) In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 342:51–56. doi:  10.1007/s11010-010-0467-9 Google Scholar
  21. Dai J, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2:497–501. doi: 10.1021/nl025547l Google Scholar
  22. Dallas P, Tucek J, Jancik D, Kolar M, Panacek A, Zboril R (2010) Magnetically controllable silver nanocomposite with multifunctional phosphotriazine matrix and high antimicrobial activity. Adv Funct Mater 20:2347–2354. doi: 10.1002/adfm.200902370 Google Scholar
  23. Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49:575–585. doi: 10.1093/annhyg/mei019 Google Scholar
  24. Dorjnamjin D, Ariunaa M, Shim YK (2008) Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci 9: 807–820. doi: 10.3390/ijms9050807 Google Scholar
  25. Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75:2973–2976. doi: 10.1128/aem.01658-08 Google Scholar
  26. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS (2009a) The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology 20:085103. doi: 10.1088/0957-4484/20/8/085103 Google Scholar
  27. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS (2009b) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:505701. doi: 10.1088/0957-4484/20/50/505701 Google Scholar
  28. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine-NBM 6:103–109. doi: 10.1016/j.nano.2009.04.006 Google Scholar
  29. Falletta E, Bonini M, Fratini E, Nostro AL, Pesavento G, Becheri A, Nostro PL, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure an applications for antimicrobial fabrics. J Phys Chem C 112:11758–11766. doi: 10.1021/jp8035814 Google Scholar
  30. Fernandez EJ, Garcıa-Barrasa J, Laguna A, Lopez-de-Luzuriaga1 JM, Monge M, Torres C (2008) The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach. Nanotechnology 19:185602. doi: 10.1088/0957-4484/19/18/185602 Google Scholar
  31. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine-NBM 5:382–386. doi: 10.1016/j.nano.2009.06.005 Google Scholar
  32. Gittard SD, Hojo D, Hyde GK, Scarel G, Narayan RJ, Parsons GN (2009) Antifungal textiles formed using silver deposition in supercritical carbon dioxide. J Mater Eng Perform 19:368–373. doi: 10.1007/s11665-009-9514-7 Google Scholar
  33. Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS., Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22:9322–9328. doi:  10.1021/la060661v Google Scholar
  34. Grunlan JC, Choi JK, Lin A (2005) Antimicrobial behavior of polyelectrolyte multilayer films containing cetrimide and silver. Biomacromolecules 6:1149–1153. Doi:  10.1021/bm049528c Google Scholar
  35. Gutierrez FM, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine-NBM 6:681–688. doi: 10.1016/j.nano.2010.02.001 Google Scholar
  36. Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G (2007) Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 28:2869–2875. doi: 10.1016/j.biomaterials.2007.02.033 Google Scholar
  37. Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, Guillén AJP, Tapia-Pérez H, Martínez Castañón G (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine-NBM 4:237–240. doi: 10.1016/j.nano.2008.04.005 Google Scholar
  38. Holtz RD, Filho AGS, Brocchi M, Martins D, Duran, N, Alves OL (2010) Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21:185102. doi:  10.1088/0957-4484/21/18/185102 Google Scholar
  39. Ilic V, Saponjic Z, Vodnik V, Molina R, Dimitrijevic S, Jovancic P, Nedeljkovic J, Radetic M (2009) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44:3983–3990. doi: 10.1007/s10853-009-3547-z Google Scholar
  40. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol Pharmaceutics 6:1388–1401. doi: 10.1021/mp900056g Google Scholar
  41. Jin WJ, Lee HK, Jeong EH, Park WH, Youk JH (2005) Preparation of polymer nanofibers containing silver nanoparticles by using poly(N-vinylpyrrolidone). Macromol Rapid Commun 26:1903–1907. doi: 10.1002/marc.200500569 Google Scholar
  42. Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46-M52. doi: 10.1111/j.1750-3841.2008.01013.x Google Scholar
  43. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76. doi: 10.1111/j.1574-6968.2007.01012.x Google Scholar
  44. Kato K, Uchida E, Kang ET, Uyama Y, Ikada Y (2003) Polymer surface with graft chains. Prog Polym Sci 28:59–89. doi: 10.1016/S0079-6700(02)00032-1 Google Scholar
  45. Kim JH, Cho H, Ryu SE, Choi MU (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: Highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80. doi: 10.1006/abbi.2000.1996 Google Scholar
  46. Kim JS, Kuk E, Yu KN, Kim J, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C, Kim Y, Lee Y, Jeong DH, Cho M (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine: NBM 3:95–101. doi: 10.1016/j.nano.2006.12.001 Google Scholar
  47. Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechn 18:1482–1484.Google Scholar
  48. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009a) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22: 235–242. doi:  10.1007/s10534-008-9159-2 Google Scholar
  49. Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009b) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechn 19:760–764.Google Scholar
  50. Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD (2000) Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res 53:621–631 doi: 10.1002/1097-4636(2000)53:6<621::aid-jbm2>3.0.co;2-q Google Scholar
  51. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, Mclaughlin MJ, Lead JR (2008) Nanoparticles in the environment: behaviour, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851. doi: 10.1897/08-090.1 Google Scholar
  52. Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine: NBM 6:570–574. doi: 10.1016/j.nano.2009.12.002 Google Scholar
  53. Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9:2677–2681. doi:  10.1021/bm800574x Google Scholar
  54. Lee S, Lee J, Kim K, Sim SJ, Gu MB, Yi J, Lee J (2009) Eco-toxicity of commercial silver nanopowders to bacterial and yeast strains. Biotechnol Bioproc Eng 4:490–495. doi:  10.1007/s12257-008-0254-6 Google Scholar
  55. Li P, Li J, Wu C, Wu Q, Li J (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917. doi:  10.1088/0957-4484/16/9/082 Google Scholar
  56. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602. doi: 10.1016/j.watres.2008.08.015 Google Scholar
  57. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. doi:  10.1007/s00253-009-2159-5 Google Scholar
  58. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141. doi:  10.1007/s10534-010-9381-6 Google Scholar
  59. Lin YE, Vidic RD, Stout JE, Mccartney CA, Yu VL (1998) Inactivation of Mycobacterium avium by copper and silver ions. Water Res 32:1997–2000.doi: 10.1016/S0043-1354(97)00460-0 Google Scholar
  60. Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam PK, Chiu J, Che C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi:  10.1021/pr0504079 Google Scholar
  61. Lukhele LP, Mamba BB, Momba MNB, Krause RWM (2010) Water disinfection using novel cyclodextrin polyurethane containing silver nanoparticles supported on carbon nanotubes. J Appl Polym Sci 10:65–70. doi: 10.3923/jas.2010.65.70 Google Scholar
  62. Mahltig B, Gutmann E, Reibold M, Meyer DC, Böttcher H (2009) Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J Sol-Gel Sci Technol 51:204–214.Google Scholar
  63. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15:1708–1715. doi: 10.1002/adfm.200500029 Google Scholar
  64. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi: 10.1007/s11051-010-9900-y Google Scholar
  65. Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Poly Sci 113:757–766. doi: 10.1002/app.29890 Google Scholar
  66. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium forming phytopathogenic fungi. Plant Pathol J 25:376–380.Google Scholar
  67. Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27:1346–1354. doi: 10.1002/marc.200600297 Google Scholar
  68. Mohan R, Shanmugharaj AM, Hun RS (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B 96:119–126. doi: 10.1002/jbm.b.31747 Google Scholar
  69. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi: 10.1088/0957-4484/16/10/059 Google Scholar
  70. Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresource Technol 101:8772–8776. doi: 10.1016/j.biortech.2010.06.065 Google Scholar
  71. Nasrollahi A, Pourshamsian K, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dimens 1:233–239.Google Scholar
  72. Oya A, Yoishida S, Abe Y, Iizuka T, Makiyama N (1993) Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate. Carbon 31:71–73. doi: 10.1016/0008-6223(93)90157-6 Google Scholar
  73. Pal S, Tak YK, Song JM (2007) Does the antimicrobial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:172–1720. doi: 10.1128/aem.02218-06 Google Scholar
  74. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Shrma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi: 10.1021/jp063826h Google Scholar
  75. Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 31:6333–6340. doi: 10.1016/j.biomaterials.2009.07.065 Google Scholar
  76. Pape HL, Sarena SF, Contini P, Devillers C, Maftah A, Laprat P (2002) Evaluation of the antimicrobial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 40:2947–2954. doi: 10.1016/S0008-6223(02)00246-4 Google Scholar
  77. Pich A, Karak,A, Lu Y, Ghosh AK, Adler H (2006) Preparation of hybrid microgels functionalized by silver nanoparticles. Macromol Rapid Commun 27:344–350. doi:  10.1002/marc.200500761 Google Scholar
  78. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Res 339:2693–2700.doi: 10.1016/j.carres.2004.09.007 Google Scholar
  79. Rai M, Yadav A Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. doi: 10.1016/j.biotechadv.2008.09.002 Google Scholar
  80. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annal Microbiol 60:75–80. doi: 10.1007/s13213-010-0015-6 Google Scholar
  81. Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008a) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716. doi: 10.1016/j.actbio.2007.11.006 Google Scholar
  82. Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008b) Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232:145–156. doi: 10.1016/j.desal.2007.08.023 Google Scholar
  83. Sadiq R, Rodriguez MJ (2004) Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci Total Environ 321:21–46. doi: 10.1016/j.scitotenv.2003.05.001 Google Scholar
  84. Sadiq IM, Chowdhury B, Chandrasekaran N, Mukherjee A (2009) Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine NBM 5:282–286. doi: 10.1016/j.nano.2009.01.002 Google Scholar
  85. Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloid Surf B 77:214–218. doi: 10.1016/j.colsurfb.2010.01.026 Google Scholar
  86. Sarkar S, Jana AD, Samanta SK, Mostafa G (2007) Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron 26:4419–4426. doi: 10.1016/j.poly.2007.05.056 Google Scholar
  87. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96.Google Scholar
  88. Sharma V (2010) Bactericidal action of chemically treated silver surfaces for water disinfection. M Tech. Thesis, IIT Bombay, Mumbai, India.Google Scholar
  89. Sheikh FA, Kanjwal MA, Saran S, Chung WJ, Kim H (2011) Polyurethane nanofibers containing copper nanoparticles as future materials. Appl Surf Sci 257:3020–3026. doi: 10.1016/j.apsusc.2010.10.110 Google Scholar
  90. Siva Kumar V, Nagaraja BM, Shashikala V, Padmasri AH, Madhavendra SS, Raju BD, Rama Rao KS (2004) Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J Mol Cat-A Chem 223:313–319. doi: 10.1016/j.molcata.2003.09.047 Google Scholar
  91. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:41–353. doi: 10.1016/S0168-6445(03)00047-0 Google Scholar
  92. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J colloid Interf Sci 275:177–182. doi: 10.1016/j.jcis.2004.02.012 Google Scholar
  93. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Bio Med 18:321–336. doi: 10.1016/0891-5849(94)00159-h Google Scholar
  94. Su W, Wei SS, Hu SQ, Tang JX (2011) Antimicrobial finishing of cotton textile with nanosized silver colloids synthesized using polyethylene glycol. J Text Inst 102:150–156. doi:0.1080/00405001003603098Google Scholar
  95. Uyama Y, Kato K, Ikada Y (1998) Surface modification of polymers by grafting. Adv Poly Sci 137:1–39. doi: 10.1007/3-540-69685-7_1 Google Scholar
  96. Wang C, Flynn NT, Langer R (2004) Controlled structure and properties of thermo responsive nanoparticle-hydrogel composites. Adv Mater 16:1074–1079. doi:  10.1002/adma.200306516 Google Scholar
  97. Williams DN, Ehrman SH, Holoman TRP (2006) Evaluation of the microbial growth response to inorganic nanoparticles. J Nanobiotechnol 4:3. doi: 10.1186/1477-3155-4-3 Google Scholar
  98. WHO (2006) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva.Google Scholar
  99. Wu Y, Jia W, An Q, Liu Y, Chen J, Li G (2009) Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications. Nanotechnology 20:245101. doi: 10.1088/0957-4484/20/24/245101 Google Scholar
  100. Yoon KY, Byeon JH, Park CW, Hwang J (2007) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers, Environ Sci Technol 42: 1251–1255. doi: 10.1021/es0720199 Google Scholar
  101. Yu DG, Lin WC, Yang MC (2007) Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayers. Bioconjugate Chem 18:1521–1529. doi: 10.1021/bc060098s Google Scholar
  102. Yuan W, Ji J, Fu J, Shen J (2007) A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating. J Biomed Mater Res B: Appl Biomater 16:556–563. doi: 10.1002/jbm.b.30979 Google Scholar
  103. Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohyd Polym 53:439–446. doi: 10.1016/S0144-8617(03)00103-6 Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Suparna Mukherji
    • 1
  • Jayesh Ruparelia
    • 2
  • Shekhar Agnihotri
    • 3
  1. 1.Centre for Environmental Science and Engineering (CESE)IIT BombayPowaiIndia
  2. 2.Department of Chemical Engineering, Institute of TechnologyNirma UniversityAhmedabadIndia
  3. 3.Centre for Research in Nanotechnology & Science (CRNTS)IIT BombayPowaiIndia

Personalised recommendations