Synthesis, Characterization, and Antimicrobial Activity of Zinc Oxide Nanoparticles

Chapter

Abstract

In recent years, research and the use of nanomaterials has attracted much interest due to their small size (1–100 nm) and novel structures that exhibit significantly improved physical, chemical, and biological properties compared to their bulk or molecular precursors. In this context, a new branch of multidisciplinary science integrating engineering with biology, chemistry and physics has emerged as nanosciences or nanotechnology, due to their existence and potential applications in a wide variety of fields such as electronics, ceramics, catalysis, magnetic data storage, structural components, food, cosmetics, biological and medical [1–3]. Metal oxides, in particular the transition metal oxides, have profound applications in various fields due to their excellent optical, magnetic, electrical and chemical properties. As the size decreases from the micrometer to the nanometer range, the materials exhibit enhanced diffusivity, increased mechanical strength and chemical reactivity, higher specific heat and electrical resistivity, and enhanced biological properties. This is in part because as particles become smaller, the proportion of atom found at the surface increases relative to the proportion inside its volume, which means that composite materials containing nanoparticles can be more reactive and have enhanced chemical properties. Nanostructure metal oxides are more interesting in that they can be synthesized with a very high surface-to-volume ratio and with unusual morphologies that contain numerous edge/corner and other reactive surface sites, which can be easily functionalized with different groups for the desired applications. An increasing use of nanomaterials has been reported in biological- and medical-related applications such as imaging, sensing, target drug delivery, fighting human pathogens, healthcare products, cosmetics, and food preservative agents due to better safety and stability compared to bulk precursors or their organic counterparts.

Keywords

Antibacterial Activity Zinc Acetate Zinc Oxide Metal Oxide Nanoparticles Solution Phase Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author thank Dr. Vector Huber for the critical reading the manuscript. The author would like to thank Dr. R.T. Koodali and Krishna R. Raghupathi for their help in preparation of this article.

References

  1. 1.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562.CrossRefGoogle Scholar
  2. 2.
    Rotello V (2003) Nanoparticles: Building Blocks for Nanotechnology, Kluwer Academia, Boston.Google Scholar
  3. 3.
    Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys: Condens Matter 16:R829.CrossRefGoogle Scholar
  4. 4.
    Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal Oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686.CrossRefGoogle Scholar
  5. 5.
    Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioengg 86:521–522.CrossRefGoogle Scholar
  6. 6.
    Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214.CrossRefGoogle Scholar
  7. 7.
    Wei C, Lin WY, Zainal Z, William NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward s solar-assisted water disinfection system. Environ Sci Tech 28:934–938.CrossRefGoogle Scholar
  8. 8.
    Fang M, Chen J-H, Xu X-L, Yang P-H, Hildebrand HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrobiol Agents 27:513–517.CrossRefGoogle Scholar
  9. 9.
    Jones N, Ray B, Koodali RT, Manna AC (2008) Antibacterial activity of ZnO nanoparticles suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76.CrossRefGoogle Scholar
  10. 10.
    Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coating. J Phys Chem B 109:8889–8898.CrossRefGoogle Scholar
  11. 11.
    Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Method 54:177–182.CrossRefGoogle Scholar
  12. 12.
    Sawai J, Yoshikawa T (2004) Quantative evalution of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809.CrossRefGoogle Scholar
  13. 13.
    Liu H-L, Yang TC-K (2003) Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Proc Biochem 39:475–481.CrossRefGoogle Scholar
  14. 14.
    Sondi I, Salopak-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182.CrossRefGoogle Scholar
  15. 15.
    Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin, PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262.CrossRefGoogle Scholar
  16. 16.
    Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli, physicochemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156.CrossRefGoogle Scholar
  17. 17.
    Sunada K, Kikuchi Y, Hashimoto K, Fujishima K (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32:726–728.CrossRefGoogle Scholar
  18. 18.
    Bellantone M, Williams HD, Hench LL (2002) Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46:1940–1945.CrossRefGoogle Scholar
  19. 19.
    Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870.CrossRefGoogle Scholar
  20. 20.
    Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133:4077–4082.Google Scholar
  21. 21.
    Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorgan Mater 3:643–646.CrossRefGoogle Scholar
  22. 22.
    Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63.CrossRefGoogle Scholar
  23. 23.
    Campo EJA, Peiteado M, Caballero AC, Villegas M, Modriguez-Paez JE (2009) Room temperature synthesis of high purity 2D ZnO nanoneedles. J Ceramic Proc Res 10:477–481.Google Scholar
  24. 24.
    Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001 (18pp).Google Scholar
  25. 25.
    Liu B, Zeng HC (2004) Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20:4196–4204.CrossRefGoogle Scholar
  26. 26.
    Xu F, Zhang P, Navrotsky A, Yuan ZT, Ren TZ, Halasa M, Su B-L (2007) Hierarchically assembled porous ZnO nanoparticles: synthesis, surface energy, and photocatalytic activity. Chem Mater 19:5680–5686.CrossRefGoogle Scholar
  27. 27.
    Kim H, Sigmund W (2004) ZnO nanocrystals synthesized by physical deposition. J Nanosci Nanotechnol 4:275–278.CrossRefGoogle Scholar
  28. 28.
    Chen ZG, Li F, Liu G, Tang Y, Cong H, Lu GQ, Cheng HM (2006) Preparation of high purity ZnO nanobelts by thermal evaporation of ZnS. J Nanosci Nanotechnol 6:704–707.CrossRefGoogle Scholar
  29. 29.
    Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572.CrossRefGoogle Scholar
  30. 30.
    Tam KH, Djurisic AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chan WK, Leung FCC, Au DWT (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516:6167–6174.CrossRefGoogle Scholar
  31. 31.
    Raghupati RK, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028.CrossRefGoogle Scholar
  32. 32.
    Vishwanathan R, Gupta RB (2003) Formation of zinc oxide nanoparticles in supercritical water. J Supercritical Fluids 27:187–193.CrossRefGoogle Scholar
  33. 33.
    Tang L, Bao X-B, Zhou H, Yuan A-H (2008) Synthesis and characterization of ZnO nanorods by a simple single-source hydrothermal method. Physica E 40:924–928.CrossRefGoogle Scholar
  34. 34.
    Zhang Z, Mu J (2007) Hydrothermal synthesis of ZnO nanobundles controlled by PEO–PPO–PEO block copolymers. J Colloid Interface Sci 307:79–82.CrossRefGoogle Scholar
  35. 35.
    Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Matters Chem Phys 121:198–201.CrossRefGoogle Scholar
  36. 36.
    Ma M-G, Zhu YJ, Cheng GF, Huang YH (2007) Microwave synthesis and characterization of ZnO with various morphologies. Mater Lett 62:507–510.CrossRefGoogle Scholar
  37. 37.
    Vijayan TA, Chandramohan R, Valanarasu S, Thirumalai J, Venkateswaran S, Mahalingam T, Srkumar SR (2008) Optimization of growth conditions of ZnO nano thin films by chemical double dip technique. Sci Technol Adv Mater 9:035007.CrossRefGoogle Scholar
  38. 38.
    Dange C, Phan T, Andre V, Rieger J, Persello J, Foissy A (2007) Adsorption mechanism and dispersion efficiency of three anionic additives [poly(acrylic acid), poly(styrene sulfonate) and HEDP] on zinc oxide. J Colloid Interface Sci 315:107–115.CrossRefGoogle Scholar
  39. 39.
    Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspension of ZnO nanoparticles (ZnO nanofluids). J Nanoparticles Res 9:479–489.CrossRefGoogle Scholar
  40. 40.
    Desselberger U (2000) Emerging and re-emerging infectious diseases. J Infect 40:3–15.CrossRefGoogle Scholar
  41. 41.
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697.CrossRefGoogle Scholar
  42. 42.
    Donlan RM, Costerton JW (2002) Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193.CrossRefGoogle Scholar
  43. 43.
    Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34:1865–1868.Google Scholar
  44. 44.
    Hajokova P, Spatenka P, Horsky J, Horska I, Kolouch A (2007) Photocatalytic effect of TiO2 films on various virus and bacteria. Plasma Process Polym 4:S397–S401.CrossRefGoogle Scholar
  45. 45.
    Adama LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532.CrossRefGoogle Scholar
  46. 46.
    Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles – an antibacterial study. Sci Technol. Adv Mater 9:035004 (7pp).Google Scholar
  47. 47.
    Reddy KM, Feris K, Bell J, Hanley C, Punnoose A (2007) Selective toxicity of zine oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:213902 (3 pp).Google Scholar
  48. 48.
    Rekha K, Nirmala M, Nair MG, Anukaliani A (2010) Structure, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B 405:3180–3185.CrossRefGoogle Scholar
  49. 49.
    Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, Moghaddam KM, Shahverdi AR (2005) ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res B: Appl Biomater 93B:557–561.Google Scholar
  50. 50.
    Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490.CrossRefGoogle Scholar
  51. 51.
    Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201.CrossRefGoogle Scholar
  52. 52.
    Heinlaan M, Ivask A, Blinova I, Dubourguir HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fisheri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316.CrossRefGoogle Scholar
  53. 53.
    Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140–4144.CrossRefGoogle Scholar
  54. 54.
    Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of zinc oxide nanoparticles on Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331.CrossRefGoogle Scholar
  55. 55.
    Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28:1324–1330.CrossRefGoogle Scholar
  56. 56.
    Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177.CrossRefGoogle Scholar
  57. 57.
    Wang X, Yang F, Yang W, Yang X (2007) A study on the antibacterial acitivity of one-dimensional ZnO nanowire arrays: Effects of the orientation and plane surface. Chem Commun 4419–4421.Google Scholar
  58. 58.
    Zhou D, Keller AA (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44:2948–2956.CrossRefGoogle Scholar
  59. 59.
    Ohira T, Yamamoto O, Iida Y, Nakagawa Z (2008) Antibacterial activity of ZnO powder with crystallographic orientation. J Mater Sci Mater Med 19:1407–1412.CrossRefGoogle Scholar
  60. 60.
    Yamamoto O, Komatsu M, Sawai J, Nakagawa Z (2004) Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci Med 15:847–851.CrossRefGoogle Scholar
  61. 61.
    Xia T, Kovochich M, Liong M, Adler LM, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134.CrossRefGoogle Scholar
  62. 62.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolavels. Sciences 311:622–627.CrossRefGoogle Scholar
  63. 63.
    Lipovsky A, Tzitrinovich Z, Friedmann H, Applerot G, Gedanken A, Lubart R (2009) EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J Phys Chem C 113:15997–16001.CrossRefGoogle Scholar
  64. 64.
    Jiang J, Oberdrster G, Elder A, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42.CrossRefGoogle Scholar
  65. 65.
    Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386.CrossRefGoogle Scholar
  66. 66.
    Hirota K, Sugimoto M, Kato M, Tsukagoshi K, Tanigawa T, Sugimoto H (2010) Preparation of Zine oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceramics Int 36:497–506.CrossRefGoogle Scholar
  67. 67.
    Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Glenn TC, Williams PL (2011) Comparative phototoxicity of nanoparticle and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particles size. Environ Pollut 159:1473–1480.CrossRefGoogle Scholar
  68. 68.
    Applerot G, Perkas N, Amirian G, Girshevitz O, Gedanken A (2009) Coating of glass with ZnO via ultrasonic irradiation and a study of its antibacterial properties. Appl Surf Sci 2565:53–58.Google Scholar
  69. 69.
    McCarthy TJ, Zeelie JJ, Krause DJ (1992) The antibacterial action of zinc ion/antioxidant combination. J Clin Pharm Ther 17:51–54.CrossRefGoogle Scholar
  70. 70.
    Blencowe DK, Morby AP (2003) Zn (II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311.CrossRefGoogle Scholar
  71. 71.
    Foster TJ (2005) Immune envasion by staphylococci. Nat Rev Microbiol 3:948–958.CrossRefGoogle Scholar
  72. 72.
    Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194.CrossRefGoogle Scholar
  73. 73.
    Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res 42:4591–4602.CrossRefGoogle Scholar
  74. 74.
    Dutta RK, Sharma PK, Bhargava R, Kumar N, Pandey AC (2010) Differential susceptibility of Escherichia coli cells towards transition metal-doped and matrix-embeded ZnO nanoparticles. J Phy Chem B 114:5594–5599.CrossRefGoogle Scholar
  75. 75.
    Lu W, Liu G, Gao S, Xing S, Wang J (2008) Tyrosine-assistant preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19:445711 (10pp).Google Scholar
  76. 76.
    Lin Y-J, Xu X-Y, Huang L, Evans DG, Li D-Q (2009) Bactericidal properties of ZnO-Al2O3 composites formed from layered double hydroxide precursors. J Mater Sci Mater Med 20:591–595.CrossRefGoogle Scholar
  77. 77.
    Yamamoto O, Sawai J, Sasamoto T (2000) Change in antibacterial characteristic with doping of ZnO in MgO-ZnO solid solution. Int J Inorganic Mater 2:451–454.CrossRefGoogle Scholar
  78. 78.
    Moribe S, Ikoma T, Akiyama K, Zhang Q, Saito F, Tero-Kubota S (2007) EPR study on paramagnetic species in nitrogen-doped ZnO powders prepared by a mechanochemical method. Chem Phys Lett 436:373–377.CrossRefGoogle Scholar
  79. 79.
    Jose B, Antoci V, Zeiger AR, Wickstrom E, Hickok NJ (2005) Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus. Chem Biol 12:1041–1048.CrossRefGoogle Scholar
  80. 80.
    Perelshtein I, Applerot G, Perkas N, Wehrschetz E, Hasmann A, Guebitz GM, Gedanken A (2009) Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on Fabrics. Appl Mater Interfaces 1:361–366.CrossRefGoogle Scholar
  81. 81.
    Koga H, Kitaoka T, Wariishi H (2009) In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications. J Mater Chem 19:2135–2140.CrossRefGoogle Scholar
  82. 82.
    Vila B, Escribano F, Esteban A, Fontgibell A, Esteve-Garcia E, Brufau J (2010) Application of ZnO-functionalised-sepiolite in weaning piglet diets. Livestock Sci 134:232–235.CrossRefGoogle Scholar
  83. 83.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging disiciple evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839.CrossRefGoogle Scholar
  84. 84.
    Adisehaih P, Hall JB, McNeil SE (2009) Nanomaterial standards for efficacy and toxicity assessment. WIREs Nanomed Nanobiotechnol 2:99–112.CrossRefGoogle Scholar
  85. 85.
    Hirano S, Higo S, Tsukamota N, Kobayashi E, Suzuki KT (1989) Pilmonary clearance and toxicity of zinc oxide instilled into the rat lung. Arch Toxicol 63:336–342.CrossRefGoogle Scholar
  86. 86.
    Ma-Hock L, Burkhardt S (2008) Inhalation toxicity of nano-scale zinc oxide in comparison with pigmentary zinc oxide using short-term inhalation test protocol. Naunyn-Schmiedebergs Arch Pharmacol 377:354.Google Scholar
  87. 87.
    Wesselkamper SC, Chen LC, Gordon T (2001) Development of pulmonary tolerance in mice exposed to zinc oxide fumes. Toxicol Sci 60:144–151.CrossRefGoogle Scholar
  88. 88.
    Wesselkamper SC, Chen LC, Gordon T (2005) Quantitative trait analysis of the development of pulmonary tolerance to inhaled zinc oxide in mice. Respir Res 6:73.CrossRefGoogle Scholar
  89. 89.
    Wang B, Feng WY et al (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276.CrossRefGoogle Scholar
  90. 90.
    Lam HF, Chen LC, Ainsworth D, Peoples S, Amdur MO (1988) Pulmonary function of guinea pigs exposed to freshly generated ultrafine zinc oxide with and without spike concentrations. Am Ind Hyg Assoc J 49:333–341.CrossRefGoogle Scholar
  91. 91.
    Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS (2008) Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 13:064031 doi: 10.1117/1.3041492.CrossRefGoogle Scholar
  92. 92.
    Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health Part A-Toxic/Hazard Subs Environ Engineer 43:278–284.CrossRefGoogle Scholar
  93. 93.
    Zhu X, Zhu S et al (2009) Acute toxicities of six manufactured nanomaterial suspension to Daphnia magna. J Nanoparticle Res 11:67–75.CrossRefGoogle Scholar
  94. 94.
    Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J Toxicol Sci 34:119–122.CrossRefGoogle Scholar
  95. 95.
    Deng XY, Luan QX, Chen WT, Wang YL, Jiao Z (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20:11510.Google Scholar
  96. 96.
    Lee J, Kang BS, Hicks B, Chancellor TF, Chu BH, Wang H-T, Keselowsky BG, Ren F, Lele TP (2008) The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials 29:3743–3749.CrossRefGoogle Scholar
  97. 97.
    Gopalan RC, Osman IF, Amani A, De Matas M, Anderson D (2009) The effect of zinc oxide and titanium dioxide nanoparticles in the comet assay with UVA photoactivation of human sperm and lymphocytes. Nanotoxicology 3:33–39.CrossRefGoogle Scholar
  98. 98.
    Beckett WS, Chalupa DF, Paul-Brown A, Speers DM, Stewart JC, Frampton MW, Well MJ, Haung LS, Cox C, Zareba W, Oberdorster G (2005) Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am J Respir Crit Care Med 171:1129–1135.CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Basic Biomedical Sciences, Sanford School of MedicineUniversity of South DakotaVermillionUSA

Personalised recommendations