A New Method for Inconsistent Multicriteria Classification

  • Weibin Deng
  • Guoyin Wang
  • Shuangxia Yang
  • Feng Hu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6954)

Abstract

Three relaxation models (VC-DRSA, VP-DRSA and ISVP-DRSA) of DRSA have been proposed to relax the strict dominance principle. However, the classification performance of these models is affected by the value of consistency level l. Until now, the value of l is set according to prior domain knowledge. But no one knows which value is the best and the reason. To address the multicriteria classification problem, we propose a new method in this paper. A new uncertainty measure is defined and an algorithm for transforming inconsistent preference-ordered systems into consistent ones (TIPStoC) is designed in this paper. An iterative approach is adopted in TIPStoC algorithm. We find that inconsistent preference-ordered information systems can be transformed into consistent systems with low computation complexity, and without losing useful information. The classification performance will be improved with the decision rules induced from the consistent systems. Besides, the value of consistency level l is set to 1.0 without depending on prior knowledge. Finally, the procedure of TIPStoC algorithm is illustrated by a real example and the efficiency of the new method is proved by experiments.

Keywords

rough set dominance-based rough set approach variable precision inconsistency classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaszczynski, J., Greco, S., Slowinski, R.: Multi-Criteria Classification-A New Scheme for Application of Dominance-Based Decision Rules. Eur. J. of Operational Research 181(3), 1030–1044 (2007)CrossRefMATHGoogle Scholar
  2. 2.
    Blaszczynski, J., Greco, S., Slowinski, R., Szelag, M.: Monotonic Variable Consistency Rough Set Approaches. Int. J. Approx. Reasoning 50(7), 979–999 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Deng, W.B., Wang, G.Y., Hu, F.: An Improved Variable Precision Model of Dominance-Based Rough Set Approach. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 60–67. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough Approximation of A Preference Relation by Dominance Relations. Eur. J. of Operational Research 117(1), 63–68 (1999)CrossRefMATHGoogle Scholar
  5. 5.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough Rets Theory for Multicriteria Decision Analysis. Eur. J. of Operational Research 129(1), 1–47 (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: Variable Consistency Model of Dominance-Based Rough Sets Approach. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Inuiguchi, M., Yoshioka, Y.: Variable-Precision Dominance-Based Rough Set Approach. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 203–212. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough Sets. Int. J. of Information and Computer Science 11(5), 341–356 (1982)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Poznan University of Technology, Laboratory of Intelligent Decision Support Systems. jMAF- software for rough set data analysis, http://idss.cs.put.poznan.pl/site/software.html
  11. 11.
    Wang, G.Y., He, X.: A Self-Learning Model under Uncertain Condition. Chinese J. of Software 14(6), 1096–1102 (2003)MATHGoogle Scholar
  12. 12.
    Wang, G.Y., Wang, Y.: 3DM: Domain-Oriented Data-Driven Data Mining. Int. J. of Fundamenta Informaticae 90(4), 395–426 (2009)MathSciNetMATHGoogle Scholar
  13. 13.
    Wang, Y., Wang, G.Y., Deng, W.B.: Concept Lattice Based Data-Driven Uncertain Knowledge Acquisition. Parttern Recognition and Artificial Intelligence 20(5), 636–642 (2007)Google Scholar
  14. 14.
    Yao, Y.Y., Wang, F., Wang, J.: “Rule + Exception” Strategies for Knowledge Management and Discovery. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 69–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Ziako, W.: Variable Precision Rough Set Model. J. of Computer and System Science 46(1), 39–59 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Weibin Deng
    • 1
    • 2
  • Guoyin Wang
    • 2
  • Shuangxia Yang
    • 2
  • Feng Hu
    • 1
    • 2
  1. 1.School of Information Science and TechnologySouthwest Jiaotong UniversityChengduChina
  2. 2.Institute of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqingChina

Personalised recommendations