Absolute Orientation of Stereoscopic Cameras by Aligning Contours in Pairs of Images and Reference Images

  • Boris Peter Selby
  • Georgios Sakas
  • Wolfgang-Dieter Groch
  • Uwe Stilla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6952)


Most approaches use corresponding points to determining an object’s orientation from stereo-images, but this is not always possible. Imaging modalities that do not produce correspondences for different viewing angles, as in X-ray imaging, require other procedures. Our method works on contours in images that do not need to be equivalent in length or contain corresponding points. It is able to determine corresponding contours and resamples those, creating new sets of corresponding points for registration. Two sets of in-plane transformations from a stereo-system are used to determine spatial orientation. The approach was tested with three ground truth datasets and sub-pixel accuracy was achieved. The approach is originally designed for X-ray based patient alignment, but it is versatile and can also be employed in other close range photogrammetry applications.


Camera orientation Contour registration Automatic Alignment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allgower, C.E., Schreuder, A.N., Farr, J.B., Mascia, A.E.: Experiences with an Application of industrial Robotics for accurate Patient Positioning in Proton Radiotherapy. International Journal of Medical Robotics and Computer Assisted Surgery 3, 72–81 (2007)CrossRefGoogle Scholar
  2. Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An efficiently computable Metric for comparing Polygonal Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 209–216 (1991)CrossRefzbMATHGoogle Scholar
  3. Demuynck, O., Cedeño, C.P., Moore, A.L.: Edge based 3D Object localization for fast and precise industrial Machine Vision Applications. International Journal of Systems Applications, Engineering & Development 3, 45–52 (2009)Google Scholar
  4. Domik, G., Leberl, F., Kobrick, M.: Radar Image Simulation and its Application in Image Analysis. In: Archives of the International Society of Photogrammetry and Remote Sensing, vol. 25(A3a), pp. 99–105 (1984)Google Scholar
  5. Engelsman, M., Mazal, A., Jaffray, D.A.: Patient Positioning and Set-up Verification for Planning and Treatment. In: de Laney, T.F., Kooy, H.M. (eds.) Proton and Charged Particle Radiotherapy, 1st edn., pp. 57–69. Lippincott Williams & Wilkins, Philadelphia (2008)Google Scholar
  6. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and automated Cartography. Communications of the ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  7. Kim, H., Choi, J., Chang, H., Yu, K.: Generation of a Disparity Map using piecewise linear Transformation. In: Mastorakis, N., Cecchi, A. (eds.) Proceedings of 5th International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Venice, Italy, pp. 40–45 (2006)Google Scholar
  8. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality Image Registration by Maximization of Mutual Information. IEEE Transactions on Medical Imaging 16, 187–198 (1997)CrossRefGoogle Scholar
  9. Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. The Computer Journal 7, 308–313 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Pollard, S.B., Mayhew, J.E., Frisby, J.P.: PMF: A Stereo Correspondance Algorithm using a Disparity Gradient Limit. Perception 14, 449–470 (1985)CrossRefGoogle Scholar
  11. Selby, B.P., Sakas, G., Walter, S., Groch, W.-D., Stilla, U.: Detection of Pose Changes for Spatial Objects from projective Images. In: Stilla, U., Meyer, H., Rottensteiner, F., Heipke, C., Hinz, S. (eds.) Proceedings of Photogrammetric Image Analysis Conference (PIA), Munich, Germany, vol. 36, pp. 105–110 (2007)Google Scholar
  12. Selby, B.P., Sakas, G., Walter, S.: 3D Alignment Correction for Proton Beam Treatment. In: Proceedings of Conference of the German Society for Biomedical Engineering (DGBMT), Aachen, Germany (2007)Google Scholar
  13. Selby, B.P., Sakas, G., Walter, S., Groch, W.-D., Stilla, U.: A Radiometry tolerant Method for direct 3D/2D Registration of Computed Tomography Data to X-ray Images: Transfer Function independent Registration. In: Deserno, T.M., Handels, H., Meinzer, H.-P., Tolxdorff, T. (eds.) Conference on Medical Imaging (BVM), Informatik Aktuell, pp. 117–121. Springer, Heidelberg (2010)Google Scholar
  14. Tanase, M., Veltkamp, R.C., Haverkort, H.J.: Multiple Polyline to Polygon Matching. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 60–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Boris Peter Selby
    • 1
  • Georgios Sakas
    • 1
  • Wolfgang-Dieter Groch
    • 2
  • Uwe Stilla
    • 3
  1. 1.Medcom GmbHImage Guided RTDarmstadtGermany
  2. 2.Dept. of Computer SciencesUniversity of Applied SciencesDarmstadtGermany
  3. 3.Dept. of Photogrammetry and Remote SensingTechnische Universitaet MuenchenMuenchenGermany

Personalised recommendations