Advertisement

Estimating the Mutual Orientation in a Multi-camera System with a Non Overlapping Field of View

  • Daniel Muhle
  • Steffen Abraham
  • Christian Heipke
  • Manfred Wiggenhagen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6952)

Abstract

Multi-camera systems offer some advantages over classical systems like stereo or monocular camera systems. A multi-camera system with a non-overlapping field of view, able to cover a wide area, might prove superior e.g. in a mapping scenario where less time is needed to cover the entire area. Approaches to determine the parameters of the mutual orientation from common motions exist for more than 30 years. Most work presented in the past neglected or ignored the influence different motion characteristics have on the parameter estimation process. However, for critical motions a subset of the parameters of the mutual orientation can not be determined or only very inaccurate. In this paper we present a strategy and assessment scheme to allow a successful estimation of as many parameters as possible even for critical motions. Furthermore, the proposed approach is validated by experiments.

Keywords

Mutual orientation non-overlapping field of view bundle adjustment motion image sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Abraham(2000)]
    Abraham, S.: Kamera-Kalibrierung und metrische Auswertung monokularer Bildfolgen. Shaker, Aachen (2000)zbMATHGoogle Scholar
  2. [Caspi and Irani(2002)]
    Caspi, Y., Irani, M.: Aligning non-overlapping sequences. International Journal of Computer Vision 48(1), 39–51 (2002)CrossRefzbMATHGoogle Scholar
  3. [Chen(1991)]
    Chen, H.: A screw motion approach to uniqueness analysis of head-eye geometry. In: CVPR, pp. 145–151 (1991)Google Scholar
  4. [Chou and Kamel(1988)]
    Chou, J., Kamel, M.: Quaternions approach to solve the kinematic equation of rotation, A A x= A x A b, of a sensor-mounted robotic manipulator. In: ICRA, pp. 656–662 (1988)Google Scholar
  5. [Esquivel et al.(2007)Esquivel, Woelk, and Koch]
    Esquivel, S., Woelk, F., Koch, R.: Calibration of a multi-camera rig from non-overlapping views. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 82–91. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. [Förstner(1980)]
    Förstner, W.: Zur Prüfung zusätzlicher Parameter in der Ausgleichung. Zeitschrift für Vermessungswesen, 510–519 (1980)Google Scholar
  7. [Förstner(1987)]
    Förstner, W.: Reliability analysis of parameter estimation in linear models with applications to mensuration problems in computer vision. Computer Vision, Graphics, and Image Processing 40(3), 273–310 (1987)CrossRefGoogle Scholar
  8. [Kim et al.(2007)Kim, Hartley, Frahm, and Pollefeys]
    Kim, J.H., Hartley, R., Frahm, J.M., Pollefeys, M.: Visual odometry for non-overlapping views using second-order cone programming. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, p. 353. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. [McLauchlan(2000)]
    McLauchlan, P.F.: Gauge Independence in Optimization Algorithms for 3D Vision. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 183–199. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. [Muhle et al.(2008)Muhle, Abraham, Heipke, and Wiggenhagen]
    Muhle, D., Abraham, S., Heipke, C., Wiggenhagen, M.: Automatische Orientierung von zwei gemeinsam bewegten Stereosystemen ohne gegenseitige Korrespondenzen. In: Luhmann, T., Müller, C. (eds.) Photogrammetrie, Laserscanning, Optische 3D-Messtechnik, pp. 186–193. Wichmann Verlag, Heidelberg (2008)Google Scholar
  11. [Oskiper et al.(2007)Oskiper, Zhu, Samarasekera, and Kumar]
    Oskiper, T., Zhu, Z., Samarasekera, S., Kumar, R.: Visual Odometry System Using Multiple Stereo Cameras and Inertial Measurement Unit. In: ICRA, pp. 1–8 (2007)Google Scholar
  12. [Shiu and Ahmad(1987)]
    Shiu, Y., Ahmad, S.: Finding the mounting position of a sensor by solving a homogeneous transform equation of the form AX= XB. In: ICRA, vol. 4, pp. 1666–1671 (1987)Google Scholar
  13. [Tsai and Lenz(1989)]
    Tsai, R., Lenz, R.: A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Transactions on Robotics and Automation 5(3), 345–358 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Muhle
    • 1
  • Steffen Abraham
    • 2
  • Christian Heipke
    • 1
  • Manfred Wiggenhagen
    • 1
  1. 1.Institut für Photogrammetrie und GeoInformationHannover
  2. 2.Robert Bosch GmbHHildesheim

Personalised recommendations