Advertisement

Regionwise Classification of Building Facade Images

  • Michael Ying Yang
  • Wolfgang Förstner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6952)

Abstract

In recent years, the classification task of building facade images receives a great deal of attention in the photogrammetry community. In this paper, we present an approach for regionwise classification using an efficient randomized decision forest classifier and local features. A conditional random field is then introduced to enforce spatial consistency between neighboring regions. Experimental results are provided to illustrate the performance of the proposed methods using image from eTRIMS database, where our focus is the object classes building, car, door, pavement, road, sky, vegetation, and window.

Keywords

Classification conditional random field random decision forest segmentation facade image 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnard, K., Duygulu, P., Freitas, N.D., Forsyth, D., Blei, D., Jordan, M.: Matching words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)zbMATHGoogle Scholar
  2. Bosch, A., Zisserman, A., Muñoz, X.: Image classification using random forests and ferns. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  3. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1124–1137 (2004)CrossRefzbMATHGoogle Scholar
  4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)CrossRefGoogle Scholar
  5. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  6. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)CrossRefGoogle Scholar
  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)Google Scholar
  8. Drauschke, M., Förstner, W.: Selecting appropriate features for detecting buildings and building parts. In: Proceeding of the 21st Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), vol. (B3b), pp. 447–452 (2008)Google Scholar
  9. Drauschke, M., Mayer, H.: Evaluation of texture energies for classification of facade images. In: ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis, pp. 257–262 (2010)Google Scholar
  10. Dumont, M., Marée, R., Wehenkel, L., Geurts, P.: Fast multi-class image annotation with random subwindows and multiple output randomized trees. In: International Conference on Computer Vision Theory and Applications (VISAPP), vol. 2, pp. 196–203 (2009)Google Scholar
  11. Fröhlich, B., Rodner, E., Denzler, J.: A fast approach for pixelwise labeling of facade images. In: International Conference on Pattern Recognition, pp. 3029–3032 (2010)Google Scholar
  12. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning 63(1), 3–42 (2006)CrossRefzbMATHGoogle Scholar
  13. Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation with relative location prior. International Journal of Computer Vision 80(3), 300–316 (2008)CrossRefGoogle Scholar
  14. Kluckner, S., Bischof, H.: Image-based building classification and 3d modeling with super-pixels. In: ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis, pp. 233–238 (2010)Google Scholar
  15. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)CrossRefzbMATHGoogle Scholar
  16. Korč, F., Förstner, W.: Interpreting terrestrial images of urban scenes using discriminative random fields. In: Proceeding of the 21st Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), pp. 291–296 (2008)Google Scholar
  17. Korč, F., Förstner, W.: eTRIMS image database for interpreting images of man-made scenes. Technical Report TR-IGG-P-2009-01 (2009), http://www.ipb.uni-bonn.de/projects/etrims_db
  18. Kumar, S., Hebert, M.: Discriminative random fields: a discriminative framework for contextual interaction in classification. In: IEEE International Conference on Computer Vision, pp. 1150–1157 (2003)Google Scholar
  19. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: International Conference on Machine Learning, pp. 282–289 (2001)Google Scholar
  20. Lazaridis, G., Petrou, M.: Image registration using the Walsh transform. IEEE Transactions on Image Processing 15(8), 2343–2357 (2006)CrossRefGoogle Scholar
  21. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 775–781 (2005)Google Scholar
  22. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  23. Maree, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 34–40 (2005)Google Scholar
  24. Petrou, M., Bosdogianni, P.: Image Processing: The Fundamentals. Wiley, Chichester (1999)CrossRefGoogle Scholar
  25. Ripperda, N., Brenner, C.: Evaluation of structure recognition using labelled facade images. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 532–541. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. Rottensteiner, F., Trinder, J., Clode, S., Kubik, K.: Building detection by fusion of airborne laser scanner data and multi-spectral images: Performance evaluation and sensitivity analysis. ISPRS Journal of Photogrammetry and Remote Sensing 62(2), 135–149 (2007)CrossRefGoogle Scholar
  27. Schnitzspan, P., Fritz, M., Schiele, B.: Hierarchical support vector random fields: joint training to combine local and global features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 527–540. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  29. Shotton, J., Winnand, J., Rother, C., Criminisi, A.: Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their locations in images. In: IEEE International Conference on Computer Vision, pp. 1–8 (2005)Google Scholar
  31. Teboul, O., Simon, L., Koutsourakis, P., Paragios, N.: Segmentation of building facades using procedural shape priors. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3105–3112 (2010)Google Scholar
  32. Vedaldi, A., Fulkerson, B.: Vlfeat: An open and portable library of computer vision algorithms (2008), http://www.vlfeat.org/
  33. Verbeek, J., Triggs, B.: Region classification with markov field aspect models. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  34. Wenzel, S., Förstner, W.: Semi-supervised incremental learning of hierarchical appearance models. In: Proceeding of the 21st Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), vol. (B3b), pp. 399–405 (2008)Google Scholar
  35. Yang, M.Y., Förstner, W., Drauschke, M.: Hierarchical conditional random field for multi-class image classification. In: Proceedings of the Fifth International Conference on Computer Vision Theory and Applications, vol. 2, pp. 464–469 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael Ying Yang
    • 1
  • Wolfgang Förstner
    • 1
  1. 1.Department of Photogrammetry, Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany

Personalised recommendations