We consider safety games on finite, edge-labeled graphs and present an algorithm based on automata learning to compute small strategies. Our idea is as follows: we incrementally learn regular sets of winning plays until a winning strategy can be derived. For this purpose we develop a modified version of Kearns and Vazirani’s learning algorithm. Since computing a minimal strategy in this setting is hard (we prove that the corresponding decision problem is NP-complete), our algorithm, which runs in polynomial time, is an interesting and effective heuristic that yields small strategies in our experiments.


Leaf Node Regular Language Winning Strategy Initial Vertex Automaton Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and computation 75(2), 87–106 (1987)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.: Principles of model checking. The MIT Press, Cambridge (2008)MATHGoogle Scholar
  3. 3.
    Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Specify, compile, run: Hardware from PSL. ENTCS 190(4), 3–16 (2007)Google Scholar
  4. 4.
    Bollig, B., Katoen, J.P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf: The automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Ehlers, R.: Short witnesses and accepting lassos in ω-automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 261–272. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Filiot, E., Jin, N., Raskin, J.F.: Compositional algorithms for LTL synthesis. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 112–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Research. LNCS, vol. 2500. Springer, Heidelberg (2002)MATHGoogle Scholar
  8. 8.
    Holtmann, M., Löding, C.: Memory reduction for strategies in infinite games. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 253–264. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Kearns, M., Vazirani, U.: An introduction to computational learning theory. The MIT Press, Cambridge (1994)Google Scholar
  10. 10.
    Kupferman, O., Lustig, Y., Vardi, M.Y., Yannakakis, M.: Temporal synthesis for bounded systems and environments. In: STACS. LIPIcs, vol. 9, pp. 615–626. Leibniz-Zentrum fuer Informatik (2011)Google Scholar
  11. 11.
    Myers, G., Badgett, T., Thomas, T., Sandler, C.: The art of software testing, vol. 28. John Wiley & Sons, Chichester (2004)Google Scholar
  12. 12.
    Papadimitriou, C.H.: Computational complexity. John Wiley and Sons Ltd., Chichester (1995)MATHGoogle Scholar
  13. 13.
    Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. In: Hanson, S.J., Rivest, R.L., Remmele, W. (eds.) MIT-Siemens 1993. LNCS, vol. 661, pp. 51–73. Springer, Heidelberg (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Neider
    • 1
  1. 1.Lehrstuhl für Informatik 7RWTH Aachen UniversityGermany

Personalised recommendations