Parametric Modal Transition Systems

  • Nikola Beneš
  • Jan Křetínský
  • Kim G. Larsen
  • Mikael H. Møller
  • Jiří Srba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6996)


Modal transition systems (MTS) is a well-studied specification formalism of reactive systems supporting a step-wise refinement methodology. Despite its many advantages, the formalism as well as its currently known extensions are incapable of expressing some practically needed aspects in the refinement process like exclusive, conditional and persistent choices. We introduce a new model called parametric modal transition systems (PMTS) together with a general modal refinement notion that overcome many of the limitations and we investigate the computational complexity of modal refinement checking.


Model Check Software Product Line Conjunctive Normal Form Atomic Proposition Label Transition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal and mixed specifications. Bulletin of the EATCS, vol. 95, pp. 94–129 (2008)Google Scholar
  2. 2.
    Balcazar, J.L., Gabarró, J., Santha, M.: Deciding bisimilarity is P-complete. Formal Aspects of Computing 4(6A), 638–648 (1992)CrossRefzbMATHGoogle Scholar
  3. 3.
    Beneš, N., Křetínský, J., Larsen, K.G., Møller, M.H., Srba, J.: Parametric modal transition systems. Technical report FIMU-RS-2011-03, Faculty of Informatics, Masaryk University, Brno (2011)Google Scholar
  4. 4.
    Beneš, N., Křetínský, J.: Process algebra for modal transition systemses. In: Matyska, L., Kozubek, M., Vojnar, T., Zemcík, P., Antos, D. (eds.) MEMICS. OASICS, vol. 16, pp. 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)Google Scholar
  5. 5.
    Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theor. Comput. Sci. 106(1), 3–20 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an one-selecting variant. J. of Logic and Alg. Program. 77(1-2), 20–39 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Gruler, A., Leucker, M., Scheidemann, K.D.: Modeling and model checking software product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 113–131. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Larsen, K.G., Nyman, U., Wąsowski, A.: On modal refinement and consistency. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE Computer Society, Los Alamitos (1988)Google Scholar
  12. 12.
    Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS, pp. 108–117. IEEE Computer Society, Los Alamitos (1990)Google Scholar
  13. 13.
    Nanz, S., Nielson, F., Riis Nielson, H.: Modal abstractions of concurrent behaviour. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 159–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Papadimitriou, C.H.: Computational complexity. Addison-Wesley Publishing Co., Inc., Reading (1994)zbMATHGoogle Scholar
  15. 15.
    Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are modalities good for interface theories? In: ACSD, pp. 119–127. IEEE, Los Alamitos (2009)Google Scholar
  16. 16.
    Sawa, Z., Jančar, P.: Behavioural equivalences on finite-state systems are PTIME-hard. Computing and Informatics 24(5), 513–528 (2005)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Uchitel, S., Chechik, M.: Merging partial behavioural models. In: FSE 2004, pp. 43–52. ACM, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nikola Beneš
    • 2
  • Jan Křetínský
    • 2
    • 3
  • Kim G. Larsen
    • 1
  • Mikael H. Møller
    • 1
  • Jiří Srba
    • 1
  1. 1.Aalborg UniversityDenmark
  2. 2.Masaryk UniversityCzech Republic
  3. 3.Technische Universität MünchenGermany

Personalised recommendations