Statistical Model Checking for Cyber-Physical Systems

  • Edmund M. Clarke
  • Paolo Zuliani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6996)

Abstract

Statistical Model Checking is useful in situations where it is either inconvenient or impossible to build a concise representation of the global transition relation. This happens frequently with cyber-physical systems: Two examples are verifying Stateflow-Simulink models and in reasoning about biochemical reactions in Systems Biology. The main problem with Statistical Model Checking is caused by rare events. We describe how Statistical Model Checking works and demonstrate the problem with rare events. We then describe how Importance Sampling with the Cross-Entropy Technique can be used to address this problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M.Z., Ryan, M.: Symbolic model checking for probabilistic processes. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Grosu, R., Smolka, S.A.: Carlo Model Checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian approach to Model Checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  10. 10.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Symmetry reduction for probabilistic model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Parnas, D.L.: Really rethinking ‘Formal Methods’. IEEE Computer 43(1), 28–34 (2010)CrossRefGoogle Scholar
  13. 13.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE, Los Alamitos (1977)Google Scholar
  14. 14.
    Rubinstein, R.Y.: The cross-entropy method for combinatorial and continuous optimization. Methodology and Computing in Applied Probability 2, 127–190 (1999)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method. Springer, Heidelberg (2004)CrossRefMATHGoogle Scholar
  16. 16.
    Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Srinivasan, R.: Importance Sampling. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  18. 18.
    Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic properties with unbounded until. In: Davies, J. (ed.) SBMF 2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg (2011)Google Scholar
  19. 19.
    Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statistical probabilistic model checking. STTT 8(3), 216–228 (2006)CrossRefMATHGoogle Scholar
  20. 20.
    Younes, H.L.S., Musliner, D.J.: Probabilistic plan verification through acceptance sampling. In: AIPS Workshop on Planning via Model Checking, pp. 81–88 (2002)Google Scholar
  21. 21.
    Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to Stateflow/Simulink verification. In: HSCC, pp. 243–252 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Edmund M. Clarke
    • 1
  • Paolo Zuliani
    • 1
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations