Combining Theories: The Ackerman and Guarded Fragments

  • Carlos Areces
  • Pascal Fontaine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6989)

Abstract

Combination of decision procedures is at the heart of Satisfiability Modulo Theories (SMT) solvers. It provides ways to compose decision procedures for expressive languages which mix symbols from various decidable theories. Typical combinations include (linear) arithmetic, uninterpreted symbols, arrays operators, etc. In [7] we showed that any first-order theory from the Bernays-Schönfinkel-Ramsey fragment, the two variable fragment, or the monadic fragment can be combined with virtually any other decidable theory. Here, we complete the picture by considering the Ackermann fragment, and several guarded fragments. All theories in these fragments can be combined with other decidable (combinations of) theories, with only minor restrictions. In particular, it is not required for these other theories to be stably-infinite.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andréka, H., Németi, I., van Benthem, J.: Modal logics and bounded fragments of predicate logic. Journal of Philosophical Logic 27(3), 217–274 (1998)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, ch. 26, pp. 825–885. IOS Press, Amsterdam (2009)Google Scholar
  3. 3.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logics. Elsevier, Amsterdam (2006)Google Scholar
  5. 5.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical Logic. Springer, Berlin (1997)CrossRefMATHGoogle Scholar
  6. 6.
    Dreben, B., Goldfarb, W.D.: The Decision Problem: Solvable Classes of Quantificational Formulas. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  7. 7.
    Fontaine, P.: Combinations of theories for decidable fragments of first-order logic. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 263–278. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Fontaine, P., Gribomont, E.P.: Combining non-stably infinite, non-first order theories. In: Ahrendt, W., Baumgartner, P., de Nivelle, H., Ranise, S., Tinelli, C. (eds.) Selected Papers from the Workshops on Disproving and the Second International Workshop on Pragmatics of Decision Procedures (PDPAR 2004). ENTCS, vol. 125, pp. 37–51 (2005)Google Scholar
  9. 9.
    Grädel, E.: Why are modal logics so robustly decidable? In: Current Trends in Theoretical Computer Science. Entering the 21st Century, pp. 393–408. World Scientific, Singapore (2001)Google Scholar
  10. 10.
    Grädel, E.: Guarded fixed point logics and the monadic theory of countable trees. Theoretical Computer Science 288(1), 129–152 (2002)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Grädel, E., Walukiewicz, I.: Guarded fixed point logic. In: Logic In Computer Science (LICS), pp. 45–54. IEEE Computer Society Press, Washington, USA (1999)Google Scholar
  12. 12.
    Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64, 1719–1742 (1998)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Grädel, E.: Decision procedures for guarded logics. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 31–51. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Hodkinson, I.M.: Loosely guarded fragment of first-order logic has the finite model property. Studia Logica 70(2), 205–240 (2002)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Marx, M.: Tolerance logic. Journal of Logic, Language and Information 10(3), 353–374 (2001)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Nelson, G., Oppen, D.C.: Simplifications by cooperating decision procedures. ACM Transactions on Programming Languages and Systems 1(2), 245–257 (1979)CrossRefMATHGoogle Scholar
  17. 17.
    Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson–Oppen combination procedure. In: Baader, F., Schulz, K.U. (eds.) Frontiers of Combining Systems (FroCoS), pp. 103–120. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  18. 18.
    Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Theoretical Computer Science 290(1), 291–353 (2003)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Tinelli, C., Zarba, C.G.: Combining non-stably infinite theories. Journal of Automated Reasoning 34(3), 209–238 (2005)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    van Benthem, J.: Dynamic bits and pieces. Technical Report LP-1997-01, ILLC, University of Amsterdam (January 1997)Google Scholar
  21. 21.
    Vardi, M.: Why is modal logic so robustly decidable? DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 31, pp. 149–184. AMS, Providence (1997)MATHGoogle Scholar
  22. 22.
    Wies, T., Piskac, R., Kuncak, V.: Combining Theories with Shared Set Operations. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 366–382. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carlos Areces
    • 1
    • 2
  • Pascal Fontaine
    • 1
    • 3
  1. 1.INRIA Nancy-Grand EstNancyFrance
  2. 2.FaMAF, Universidad Nacional de CórdobaCórdobaArgentina
  3. 3.Université de Nancy, LoriaNancyFrance

Personalised recommendations