Advertisement

Tailoring Temporal Description Logics for Reasoning over Temporal Conceptual Models

  • Alessandro Artale
  • Roman Kontchakov
  • Vladislav Ryzhikov
  • Michael Zakharyaschev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6989)

Abstract

Temporal data models have been used to describe how data can evolve in the context of temporal databases. Both the Extended Entity-Relationship (EER) model and the Unified Modelling Language (UML) have been temporally extended to design temporal databases. To automatically check quality properties of conceptual schemas various encoding to Description Logics (DLs) have been proposed in the literature. On the other hand, reasoning on temporally extended DLs turn out to be too complex for effective reasoning ranging from 2ExpTime up to undecidable languages. We propose here to temporalize the ‘light-weight’ DL-Lite logics obtaining nice computational results while still being able to represent various constraints of temporal conceptual models. In particular, we consider temporal extensions of \(\ensuremath{\textsl{DL-Lite}_\textit{bool}}^\mathcal{N}\), which was shown to be adequate for capturing non-temporal conceptual models without relationship inclusion, and its fragment \(\smash{\ensuremath{\textsl{DL-Lite}_\textit{core}}^\mathcal{N}}\) with most primitive concept inclusions, which are nevertheless enough to represent almost all types of atemporal constraints (apart from covering).

Keywords

Temporal Logic Description Logic Conceptual Schema Temporalized Role Evolution Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Reasoning over extended ER models. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 277–292. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light of first-order logic. In: Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007), pp. 361–366 (2007)Google Scholar
  3. 3.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. of Artificial Intelligence Research 36, 1–69 (2009)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Artale, A., Franconi, E., Mandreoli, F.: Description logics for modelling dynamic information. In: Chomicki, J., van der Meyden, R., Saake, G. (eds.) Logics for Emerging Applications of Databases. LNCS. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tractable description logics. In: 14th Int. Symposium on Temporal Representation and Reasoning (TIME 2007). IEEE Computer Society, Los Alamitos (2007)Google Scholar
  6. 6.
    Artale, A., Parent, C., Spaccapietra, S.: Evolving objects in temporal information systems. Annals of Mathematics and Artificial Intelligence 50(1-2), 5–38 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Artale, A., Franconi, E.: Foundations of temporal conceptual data models. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 10–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: DL-Lite with temporalised concepts, rigid axioms and roles. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 133–148. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: TDL-Lite: How to cook decidable temporal description logics (to be submitted, 2011)Google Scholar
  10. 10.
    Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Complexity of reasoning over temporal data models. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 174–187. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  12. 12.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artificial Intelligence 168(1-2), 70–118 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable description logics for ontologies. In: Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 602–607 (2005)Google Scholar
  14. 14.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Artificial Intelligence Research (JAIR) 39(3), 385–429 (2007)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Combi, C., Degani, S., Jensen, C.S.: Capturing temporal constraints in temporal ER models. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 397–411. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Finger, M., McBrien, P.: Temporal conceptual-level databases. In: Gabbay, D., Reynolds, M., Finger, M. (eds.) Temporal Logics – Mathematical Foundations and Computational Aspects, pp. 409–435. Oxford University Press, Oxford (2000)Google Scholar
  17. 17.
    Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics: theory and applications. In: Studies in Logic. Elsevier, Amsterdam (2003)Google Scholar
  18. 18.
    Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal Logic: Mathematical Foundations and Computational Aspects, vol. 1. Oxford University Press, Oxford (1994)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gabbay, D., Finger, M., Reynolds, M.: Temporal Logic: Mathematical Foundations and Computational Aspects, vol. 2. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  20. 20.
    Gregersen, H., Jensen, J.S.: Conceptual modeling of time-varying information. Technical Report TimeCenter TR-35. Aalborg University, Denmark (1998)Google Scholar
  21. 21.
    Gregersen, H., Jensen, J.S.: Temporal Entity-Relationship models – a survey. IEEE Transactions on Knowledge and Data Engineering 11(3), 464–497 (1999)CrossRefGoogle Scholar
  22. 22.
    Hall, G., Gupta, R.: Modeling transition. In: Proc. of ICDE 1991, pp. 540–549 (1991)Google Scholar
  23. 23.
    Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey. In: Proc. of 15th Int. Symposium on Temporal Representation and Reasoning (TIME 2008). IEEE Computer Society, Los Alamitos (2008)Google Scholar
  24. 24.
    McBrien, P., Seltveit, A.H., Wangler, B.: An Entity-Relationship model extended to describe historical information. In: Proc. of CISMOD 1992, Bangalore, India, pp. 244–260 (1992)Google Scholar
  25. 25.
    Mendelzon, A.O., Milo, T., Waller, E.: Object migration. In: Proc. of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1994), pp. 232–242. ACM Press, New York (1994)Google Scholar
  26. 26.
    Parent, C., Spaccapietra, S., Zimanyi, E.: Conceptual Modeling for Traditional and Spatio-Temporal Applications—The MADS Approach. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  27. 27.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Schild, K.: Combining terminological logics with tense logic. In: Proc. of the 6th Portuguese Conf. on Artificial Intelligence, pp. 105–120. Springer, London (1993)CrossRefGoogle Scholar
  29. 29.
    Su, J.: Dynamic constraints and object migration. Theoretical Computer Science 184(1-2), 195–236 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Tauzovich, B.: Towards temporal extensions to the entity-relationship model. In: Proc. of the Int. Conf. on Conceptual Modeling (ER 1991). Springer, Heidelberg (1991)Google Scholar
  31. 31.
    Theodoulidis, C., Loucopoulos, P., Wangler, B.: A conceptual modelling formalism for temporal database applications. Information Systems 16(3), 401–416 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alessandro Artale
    • 1
  • Roman Kontchakov
    • 2
  • Vladislav Ryzhikov
    • 1
  • Michael Zakharyaschev
    • 2
  1. 1.KRDB Research CentreFree University of Bozen-BolzanoItaly
  2. 2.Dept. of Comp. Science and Inf. Sys.Birkbeck CollegeLondonUK

Personalised recommendations