Advertisement

Computer-Assisted Intramedullary Nailing Using Real-Time Bone Detection in 2D Ultrasound Images

  • Agnès Masson-Sibut
  • Amir Nakib
  • Eric Petit
  • François Leitner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7009)

Abstract

In this paper, we propose a new method for bone surface detection in 2D ultrasound (US) images, and its application in a Computer Assisted Orthopaedic Surgery system to assist the surgeon during the locking of the intramedullary nail in tibia fractures reduction. It is a three main steps method: first, a vertical gradient is applied to extract potential segments of bone from 2D US images, and then, a new method based on shortest path is used to eliminate all segments that do not belong to the final contour. Finally, the contour is closed using least square polynomial approximation. The first validation of the method has been done using US images of anterior femoral condyles from 9 healthy volunteers. To calculate the accuracy of the method, we compared our results to a manual segmentation performed by an expert. The Misclassification Error (ME) is between 0.10% and 0.26% and the average computation time was 0.10 second per image.

Keywords

2D ultrasound bone surface segmentation Computer Assisted Surgery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K., Taylor, R.H.: Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework. In: Proceedings of International Conference SPIE Medical Imaging, vol. 5373, pp. 131–142. Spie, Bellingham (2004)Google Scholar
  2. 2.
    Heger, S., Portheine, F., Ohnsorge, J., Schkommodau, E., Radermacher, K.: User-interactive registration of bone with A-mode ultrasound. IEEE Engineering in Medicine and Biology Magazine 24, 85–95 (2005)CrossRefGoogle Scholar
  3. 3.
    Beek, M., Abolmaesumi, P., Luenam, S., Sellens, R.W., Pichora, D.R.: Ultrasound-guided percutaneous scaphoid pinning: Operator variability and comparison with traditional fluoroscopic procedure. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 536–543. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Zhang, Y., Rohling, R., Pai, D.: Direct surface extraction from 3D freehand ultrasound images. In: Proceedings of the Conference on Visualization 2002, p. 52. IEEE Computer Society, Boston (2002)Google Scholar
  5. 5.
    Barratt, D.C., Penney, G.P., Chan, C.S.K., Slomczykowski, M., Carter, T.J., Edwards, P.J., Hawkes, D.J.: Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery.. IEEE Transactions on Medical Imaging 25, 312–323 (2006)CrossRefGoogle Scholar
  6. 6.
    Foroughi, P., Boctor, E., Swartz, M.J., Taylor, R.H., Fichtinger, G.: Ultrasound Bone Segmentation Using Dynamic Programming. In: 2007 IEEE Ultrasonics Symposium Proceedings, pp. 2523–2526. IEEE, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Normand, J., Harisboure, A., Leitner, F., Pinzuti, J., Dehoux, E., Masson-Sibut, A.: Experimental navigation for bone reconstruction. In: 10th Annual Meeting of The International Society for Computer Assisted Orthopaedic Surgery Proceedings, Versailles, France (2010); Poster 39Google Scholar
  8. 8.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13, 146–165 (2004)CrossRefGoogle Scholar
  10. 10.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Agnès Masson-Sibut
    • 1
    • 2
  • Amir Nakib
    • 1
  • Eric Petit
    • 1
  • François Leitner
    • 2
  1. 1.Laboratoire d’Images Signaux et Systémes Intelligents (EA 3945)Université Paris Est CréteilCréteilFrance
  2. 2.Research CenterAesculap SASEchirollesFrance

Personalised recommendations