Advertisement

Verifiable Security of Boneh-Franklin Identity-Based Encryption

  • Gilles Barthe
  • Federico Olmedo
  • Santiago Zanella Béguelin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6980)

Abstract

Identity-based encryption (IBE) allows one party to send ciphered messages to another using an arbitrary identity string as an encryption key. Since IBE does not require prior generation and distribution of keys, it greatly simplifies key management in public-key cryptography. Although the concept of IBE was introduced by Shamir in 1981, constructing a practical IBE scheme remained an open problem for years. The first satisfactory solution was proposed by Boneh and Franklin in 2001 and constitutes one of the most prominent applications of pairing-based cryptography. We present a game-based machine-checked reduction of the security of the Boneh-Franklin IBE scheme to the Bilinear Diffie-Hellman assumption, and analyze its tightness by providing an exact security bound. Our proof simplifies and clarifies the original proof by Boneh and Franklin and can be automatically verified by running a trusted checker.

Keywords

Bilinear Diffie-Hellman problem Boneh-Franklin scheme CertiCrypt iddentity-based encryption pairing-based cryptography verifiable security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barthe, G., Grégoire, B., Heraud, S., Zanella Béguelin, S.: Formal certification of ElGamal encryption. In: Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 1–19. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Barthe, G., Grégoire, B., Lakhnech, Y., Zanella Béguelin, S.: Beyond provable security verifiable IND-CCA security of OAEP. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 180–196. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)Google Scholar
  4. 4.
    Barthe, G., Grégoire, B., Zanella Béguelin, S.: Programming language techniques for cryptographic proofs. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 115–130. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof and improved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 197–206. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp. 647–657. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  9. 9.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal of Cryptology 17, 297–319 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, p. 634. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Galindo, D.: Boneh-Franklin Identity Based Encryption Revisited. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, p. 102. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  15. 15.
    The Coq development team: The Coq Proof Assistant Reference Manual Version 8.3. (2010), http://coq.inria.fr
  16. 16.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, p. 557. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Zanella Béguelin, S., Grégoire, B., Barthe, G., Olmedo, F.: Formally certifying the security of digital signature schemes. In: 30th IEEE symposium on Security and Privacy, S&P 2009, pp. 237–250. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gilles Barthe
    • 1
  • Federico Olmedo
    • 1
  • Santiago Zanella Béguelin
    • 1
  1. 1.IMDEA Software InstituteMadridSpain

Personalised recommendations