Weak Oblivious Transfer from Strong One-Way Functions

  • Keisuke Tanaka
  • Akihiro Yamada
  • Kenji Yasunaga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6980)


We consider weak oblivious transfer (OT) from strong one-way functions and the paradigm of transforming unconditionally secure protocols in Maurer’s bounded storage model into computational secure protocols in the random oracle model. Weak OT is secure against adversaries which have a quadratic resource gap to honest parties. We prove that the random oracle can be replaced with strong one-way functions in the OT protocol. We construct an OT protocol achieving quadratic security from strong one-way functions.


Random Oracle Random String Random Oracle Model Oblivious Transfer Honest Party 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barak, B., Mahmoody-Ghidary, M.: Merkle Puzzles Are Optimal — An O(n 2)-Query Attack on Any Key Exchange from a Random Oracle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Biham, E., Goren, Y.J., Ishai, Y.: Basing Weak Public-Key Cryptography on Strong One-Way Functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 55–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Cachin, C., Crépeau, C., Marcil, J.: Oblivious Transfer with a Memory-Bounded Receiver. In: Proceedings of FOCS 1998, pp. 493–502 (1998)Google Scholar
  4. 4.
    Cover, T.M.: Enumerative Source Encoding. IEEE Transaction on Information Theory, 73–77 (1973)Google Scholar
  5. 5.
    Crépeau, C.: Equivalence between Two Flavours of Oblivious Transfers. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg (1988)Google Scholar
  6. 6.
    Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-Round Oblivious Transfer in the Bounded Storage Model. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 446–472. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts. Communications of the ACM, 637–647 (1985)Google Scholar
  8. 8.
    Gertner, Y., Kannan, S., Malkin, T.: The Relationship between Public Key Encryption and Oblivious Transfer. In: Proceedings of FCCS 2000, pp. 325–335 (2000)Google Scholar
  9. 9.
    Goldreich, O.: Foundation of Cryptography Basic Tools, pp. 64–78. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  10. 10.
    Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR lemma. Technical Report TR95-50 (1995)Google Scholar
  11. 11.
    Goldreich, S., Micali, O., Wigderson, A.: How to Play Any Mental Game - A Completeness Theorem for Protocols with Honest Majority. In: 19th ACM Symposium on the Theory of Computing, pp. 218–229 (1987)Google Scholar
  12. 12.
    Goren, Y.: Basing Weak Public-Key Cryptography on Strong One-Way Functions. M.Sc. Thesis, Technion (2006)Google Scholar
  13. 13.
    Gowers, W.T.: An Almost m-wise Independent Random Permutation of the Cube. Combinatorics, Probability and Computing, 119–130 (1996)Google Scholar
  14. 14.
    Haitner, I.: Semi-honest to Malicious Oblivious Transfer—The Black-Box Way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Impagliazzo, R., Ruby, M.: One-Way Functions Are Essential for Complexity-Based Cryptography. In: Proceedings of FOCS 1989, pp. 230–235 (1989)Google Scholar
  16. 16.
    Impagliazzo, R., Rudich, S.: Limits on the Provable Consequences of One-Way Permutations. In: Proceedings of STOC 1989, pp. 44–61 (1989)Google Scholar
  17. 17.
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-Box Constructions for Secure Computation. In: Proceedings of STOC 2006, pp. 531–540 (2006)Google Scholar
  18. 18.
    Kilian, J.: Founding Cryptography on Oblivious Transfer. In: 20th ACM Symposium on the Theory of Computing, pp. 20–31 (1988)Google Scholar
  19. 19.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)MATHGoogle Scholar
  20. 20.
    Merkle, R.C.: Secure Communications over Insecure Channels. Communications of the ACM, 294–299 (1978)Google Scholar
  21. 21.
    Naor, M., Pinkas, B.: Efficient Oblivious Transfer Protocols. In: Proceedings of SODA 2001, pp. 448–457 (2001)Google Scholar
  22. 22.
    Rabin, M.: How to Exchange Secrets by Oblivious Transfer. Technical Report TR-81 (1981)Google Scholar
  23. 23.
    Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of Reducibility between Cryptographic Primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Yao, A.C.: How to Generate and Exchange Secrets. In: 27th IEEE Symposium on Theory of Computing, pp. 218–229 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Keisuke Tanaka
    • 1
  • Akihiro Yamada
    • 1
  • Kenji Yasunaga
    • 1
  1. 1.Tokyo Institute of TechnologyJapan

Personalised recommendations