Advertisement

Secure Two-Party Computation over a Z-Channel

  • Paolo Palmieri
  • Olivier Pereira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6980)

Abstract

In secure two-party computation, two mutually distrusting parties are interested in jointly computing a function, while preserving the privacy of their respective inputs. However, when communicating over a clear channel, security against computationally unbounded adversaries is impossible. Thus is the importance of noisy channels, over which we can build Oblivious Transfer (OT), a fundamental primitive in cryptography and the basic building block for any secure multi-party computation. The noisy channels commonly used in current constructions are mostly derived from the Binary Symmetric Channel (BSC), which is modified to extend the capabilities of an attacker. Still, these constructions are based on very strong assumptions, in particular on the error probability, which makes them hard to implement.

In this paper, we provide a protocol achieving oblivious transfer over a Z-channel, a natural channel model in various contexts, ranging from optical to covert communication. The protocol proves to be particularly efficient for a large range of error probabilities p (e.g., for 0.17 ≤ p ≤ 0.29 when a security parameter ε = 10− 9 is chosen), where it requires a limited amount of data to be sent through the channel. Our construction also proves to offer security against unfair adversaries, who are able to select the channel probability within a fixed range. We provide coding schemes that can further increase the efficiency of the protocol for probabilities distant from the range mentioned above, and also allow the use of a Z-channel with an error probability greater than 0.5. The flexibility and the efficiency of the construction make an actual implementation of oblivious transfer a more realistic prospect.

Keywords

Oblivious transfer secure multi-party computation information theoretic security cryptography on noisy channels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumert, L.D., McEliece, R.J., Rumsey, H.: Coding for optical channels. In: JPL Deep Space Network Progress Report, vol. 42-49, pp. 70–77 (1978)Google Scholar
  2. 2.
    Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg (1988)Google Scholar
  3. 3.
    Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions (extended abstract). In: FOCS, pp. 42–52. IEEE, Los Alamitos (1988)Google Scholar
  5. 5.
    Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Damgård, I.B., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivious transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 355–373. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Damgård, I., Kilian, J., Salvail, L.: On the (Im)possibility of basing oblivious transfer and bit commitment on weakened security assumptions. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Golomb, S.W.: The limiting behavior of the z-channel. IEEE Transactions on Information Theory 26(3), 372–372 (1980)CrossRefzbMATHGoogle Scholar
  9. 9.
    Imai, H., Morozov, K., Nascimento, A.: On the oblivious transfer capacity of the erasure channel. In: Proceedings of 2006 International Symposium on Information Theory (ISIT), pp. 1428–1431. IEEE, Los Alamitos (2006)CrossRefGoogle Scholar
  10. 10.
    Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31. ACM, New York (1988)Google Scholar
  11. 11.
    Moskowitz, I.S., Greenwald, S.J., Kang, M.H.: An analysis of the timed z-channel. IEEE Transactions on Information Theory 44(7), 3162–3168 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nascimento, A.C.A., Winter, A.: On the oblivious-transfer capacity of noisy resources. IEEE Transactions on Information Theory 54(6), 2572–2581 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Palmieri, P., Pereira, O.: Building oblivious transfer on channel delays. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 125–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Aiken Computation Laboratory, Harvard University (1981) (manuscript)Google Scholar
  15. 15.
    Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paolo Palmieri
    • 1
  • Olivier Pereira
    • 1
  1. 1.Université catholique de Louvain, UCL Crypto Group, ICTEAM InstituteLouvain-la-NeuveBelgium

Personalised recommendations