Generic Constant-Round Oblivious Sorting Algorithm for MPC

  • Bingsheng Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6980)

Abstract

Various information-theoretically secure Multi-Party Computation (MPC) schemes have been proposed over some finite field \(\mathbb{F}\) or some finite ring ℝ. A function f that can be evaluated on MPC is usually represented by boolean or arithmetic circuits. In general, the function class that have constant-depth arithmetic circuit is studied. Additionally, some literatures show that one can represent any formulas and branching program by low-degree randomizing polynomials, which can be evaluated in constant rounds. However, these approaches have their limitations, and it is not easy to construct the optimal branching program for a complex function. Therefore, it is not obvious how to efficiently perform oblivious sort in constant rounds, but oblivious sort is one of the most important primitive protocols for MPC in practice. In this paper, we are going to show several constant-round 0-error oblivious sorting algorithms, together with some useful applications.

Keywords

Secure Multi-party Computation Constant-round Oblivious Sort Information-theoretic Security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACD02]
    Arulanandham, J.J., Calude, C., Dinneen, M.J.: Bead-sort: A natural sorting algorithm. Bulletin of the EATCS 76, 153–161 (2002)MathSciNetMATHGoogle Scholar
  2. [AKS83]
    Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c log n parallel steps. Combinatorica 3, 1–19 (1983)MathSciNetCrossRefMATHGoogle Scholar
  3. [Bat68]
    Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the Spring Joint Computer Conference, AFIPS 1968, April 30-May 2, pp. 307–314. ACM, New York (1968)Google Scholar
  4. [BLW08]
    Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-Preserving Computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. [BNTW10]
    Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: . Improved protocols for the sharemind virtual machine. Research report T-4-10, Cybernetica (2010) http://research.cyber.ee
  6. [Can00]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000), http://eprint.iacr.org/
  7. [Can01]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Annual IEEE Symposium on Foundations of Computer Science, p. 136 (2001)Google Scholar
  8. [CFIK03]
    Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, p. 642. Springer, Heidelberg (2003)Google Scholar
  9. [Cha81]
    Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24(2), 84–90 (1981)CrossRefGoogle Scholar
  10. [CKMH07]
    Chida, K., Kikuchi, H., Morohashi, G., Hirota, K.: Efficient multiparty computation for comparator networks. In: ARES, pp. 1183–1189 (2007)Google Scholar
  11. [CL05]
    Camenisch, J.L., Lysyanskaya, A.: A Formal Treatment of Onion Routing. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. [CM00]
    Cramer, R., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme, pp. 316–334. Springer, Heidelberg (2000)MATHGoogle Scholar
  13. [Cob66]
    Cobham, A.: The recognition problem for the set of perfect squares. In: Proceedings of the 7th Annual Symposium on Switching and Automata Theory (Swat 1966), pp. 78–87. IEEE Computer Society, Washington, DC, USA (1966)CrossRefGoogle Scholar
  14. [DFK+06]
    Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. [DFNT05]
    Damgård, I., Fitzi, M., Nielsen, J.B., Toft, T.: How to split a shared secret into shared bits in constant-round (2005), http://eprint.iacr.org/2005/140
  16. [DGKN09]
    Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous Multiparty Computation: Theory and Implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. [DPSR83]
    Dowd, M., Perl, Y., Saks, M., Rudolph, L.: The balanced sorting network. In: Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing, PODC 1983, pp. 161–172. ACM, New York (1983)CrossRefGoogle Scholar
  18. [Gen09]
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM, New York (2009)Google Scholar
  19. [Goo09]
    Goodrich, M.T.: Randomized shellsort: A simple oblivious sorting algorithm. CoRR, abs/0909.1037 (2009)Google Scholar
  20. [HM00]
    Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in perfect multiparty computation. Journal of Cryptology 13(1), 31–60 (2000)MathSciNetCrossRefMATHGoogle Scholar
  21. [IK02]
    Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. [IP07]
    Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. [JKU11]
    Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications. Cryptology ePrint Archive, Report 2011/122 (2011), http://eprint.iacr.org/
  24. [Knu98]
    Knuth, D.E.: Art of Computer Programming, Sorting and Searching, 2nd edn., vol. 3. Addison-Wesley Professional, Reading (1998)MATHGoogle Scholar
  25. [MTHK09]
    McLachlan, J., Tran, A., Hopper, N., Kim, Y.: Scalable onion routing with torsk. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM Conference on Computer and Communications Security, pp. 590–599. ACM, New York (2009)Google Scholar
  26. [PSW00]
    Pfitzmann, B., Schunter, M., Waidner, M.: Secure reactive systems. RZ 3206 (#93252), IBM Research Division, Zrich (May 2000)Google Scholar
  27. [RBO89]
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing, STOC 1989, pp. 73–85. ACM, New York (1989)CrossRefGoogle Scholar
  28. [Sha79]
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  29. [vif]
    Viff documentation, http://viff.dk/doc/index.html
  30. [Weg00]
    Wegener, I.: Branching programs and binary decision diagrams: theory and applications. Society for Industrial and Applied Mathematics, Philadelphia (2000)Google Scholar
  31. [Wik04]
    Wikström, D.: A Universally Composable Mix-Net. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 317–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. [WWW98]
    Wurman, P.R., Walsh, W.E., Wellman, M.P.: Flexible double auctions for electronic commerce: theory and implementation. Decision Support Systems 24(1), 17–27 (1998)CrossRefGoogle Scholar
  33. [Yao82]
    Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, Los Alamitos (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bingsheng Zhang
    • 1
  1. 1.University of TartuEstonia

Personalised recommendations