Thin and Thick Timed Regular Languages

  • Nicolas Basset
  • Eugene Asarin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6919)

Abstract

In previous literature on timed automata, it was noticed that they are in several aspects too precise, which leads sometimes to strange artifacts, mathematical pathologies or unrealistic models. In particular, some timed automata are non-implementable, non-robust, behave badly under discretization, have many Zeno runs etc. In this paper, we propose a unifying approach to most of these issues for deterministic timed automata. We classify these automata either as thin or as thick. In thin automata, all the infinite trajectories are, in some weak sense, Zeno; the discretization of long trajectories is difficult, since it requires very small discretization step. In thick automata, most of trajectories are non-Zeno and behave well under discretization; such automata satisfy a sort of pumping lemma. Formally, the thin-thick alternative is based on the notion of entropy of timed regular languages introduced by E. Asarin and A. Degorre in [3,4]. Thin languages have the entropy = − ∞ while thick have a larger one. An important application of thin-thick alternative is again the entropy theory of timed languages. We show that the entropy can be computed with a desired precision using discretization and thus it is computable, which closes a question left open in [3,4].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Krcál, P., Yi, W.: Sampled semantics of timed automata. Logical Methods in Computer Science 6(3) (2010)Google Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: Analytic approach. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 13–27. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: Discretization approach. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 69–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Asarin, E., Degorre, A.: Two size measures for timed languages. In: FSTTCS, Schloss Dagstuhl - Leibniz-Zentrum für Informatik. LIPIcs, vol. 8, pp. 376–387 (2010)Google Scholar
  6. 6.
    Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 470–484. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Beauquier, D.: Pumping lemmas for timed automata. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 81–94. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Beck, M., Robins, S.: Computing the continuous discretely: Integer-point enumeration in polyhedra. Springer, Heidelberg (2007)MATHGoogle Scholar
  9. 9.
    Carnevali, L., Grassi, L., Vicario, E.: State-density functions over DBM domains in the analysis of non-Markovian models. IEEE Trans. Software Eng. 35(2), 178–194 (2009)CrossRefGoogle Scholar
  10. 10.
    Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Dima, C.: Computing reachability relations in timed automata. In: LICS, p. 177. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  12. 12.
    Gómez, R., Bowman, H.: Efficient detection of Zeno runs in timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 195–210. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A., Raskin, J.F.: Robust undecidability of timed and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 145–159. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Krcál, P.: Infinite Structures in Timed Systems. Ph.D. thesis, University of Uppsala, Dept. of Information Technology (May 2009)Google Scholar
  17. 17.
    Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math 115, 1–24 (2000)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Maler, O., Pnueli, A.: On recognizable timed languages. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 348–362. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic Systems 10(1-2), 87–113 (2000)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Simon, I.: Factorization forests of finite height. Theor. Comput. Sci. 72(1), 65–94 (1990)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wulf, M.D., Doyen, L., Markey, N., Raskin, J.F.: Robust safety of timed automata. Formal Methods in System Design 33(1-3), 45–84 (2008)CrossRefMATHGoogle Scholar
  22. 22.
    Wulf, M.D., Doyen, L., Raskin, J.F.: Almost ASAP semantics: from timed models to timed implementations. Formal Asp. Comput. 17(3), 319–341 (2005)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nicolas Basset
    • 1
  • Eugene Asarin
    • 2
  1. 1.LIGM, Université Paris-Est and CNRSFrance
  2. 2.LIAFA, Université Paris Diderot and CNRSFrance

Personalised recommendations