Statistical Model Checking for Networks of Priced Timed Automata

  • Alexandre David
  • Kim G. Larsen
  • Axel Legay
  • Marius Mikučionis
  • Danny Bøgsted Poulsen
  • Jonas van Vliet
  • Zheng Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6919)


This paper offers a natural stochastic semantics of Networks of Priced Timed Automata (NPTA) based on races between components. The semantics provides the basis for satisfaction of Probabilistic Weighted CTL properties (PWCTL), conservatively extending the classical satisfaction of timed automata with respect to TCTL. In particular the extension allows for hard real-time properties of timed automata expressible in TCTL to be refined by performance properties, e.g. in terms of probabilistic guarantees of time- and cost-bounded properties. A second contribution of the paper is the application of Statistical Model Checking (SMC) to efficiently estimate the correctness of non-nested PWCTL model checking problems with a desired level of confidence, based on a number of independent runs of the NPTA. In addition to applying classical SMC algorithms, we also offer an extension that allows to efficiently compare performance properties of NPTAs in a parametric setting. The third contribution is an efficient tool implementation of our result and applications to several case studies.


Model Check Medium Access Control Protocol Comparison Algorithm Probabilistic Semantic Partial Order Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Science 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) [7], pp. 49–62Google Scholar
  4. 4.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Probabilistic and topological semantics for timed automata. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 179–191. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) [7], pp. 147–161Google Scholar
  7. 7.
    Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.): HSCC 2001. LNCS, vol. 2034. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Bertrand, N., Bouyer, P., Brihaye, T., Markey, N.: Quantitative model-checking of one-clock timed automata under probabilistic semantics. In: QEST, pp. 55–64. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  9. 9.
    Bogdoll, J., Fiorti, L.-M., Hartmanns, A., Hermanns, H.: Partial order methods for statistical model checking and simulation. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 59–74. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Bohnenkamp, H., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: Modest: A compositional modeling formalism for real-time and stochastic systems. Technical Report CTIT 04-46, University of Twente (2004)Google Scholar
  11. 11.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  12. 12.
    Clarke, E.M., Donzé, A., Legay, A.: Statistical model checking of mixed-analog circuits with an application to a third order delta-sigma modulator. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 149–163. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    David, A., Larsen, K.G., Legay, A., Wang, Z., Mikucionis, M.: Time for real statistical model-checking: Statistical model-checking for real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O automata: a complete specification theory for real-time systems. In: HSCC. ACM, New York (2010)Google Scholar
  15. 15.
    Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the lmac protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. STTT 10(3), 263–279 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Gómez, R.: A compositional translation of timed automata with deadlines to uppaal timed automata. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 179–194. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A bayesian approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Kaczmarczyk, V., Sir, M., Bradac, Z.: Stochastic timed automata simulator. In: 4th European Computing Conference. WSEASGoogle Scholar
  22. 22.
    Kaczmarczyk, V., Sir, M., Bradac, Z.: Stochastic timed automata simulator. In: Proceedings of the 4th European Computing Conference (2010)Google Scholar
  23. 23.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: POPL, pp. 344–352 (1989)Google Scholar
  24. 24.
    Maler, O., Larsen, K.G., Krogh, B.H.: On zone-based analysis of duration probabilistic automata. In: INFINITY. EPTCS, vol. 39, pp. 33–46 (2010)Google Scholar
  25. 25.
    Minea, M.: Partial Order Reduction for Verification of Timed Systems. PhD thesis, Carnegie Mellon (1999)Google Scholar
  26. 26.
    Panangaden, P.: Labelled Markov Processes. Imperial College Press (2010)Google Scholar
  27. 27.
    Poulsen, D., van Vliet, J.: Duration probabilistic automata. Technical report, Aalborg University (2011)Google Scholar
  28. 28.
    Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    The smv model checker,
  30. 30.
  31. 31.
    Teige, T., Eggers, A., Fränzle, M.: Constraint-based analysis of concurrent probabilistic hybrid systems: An application to networked automation systems. In: Nonlinear Analysis: Hybrid Systems (2011)Google Scholar
  32. 32.
    The uppaal tool,
  33. 33.
    van Hoesel, L.F.W.: Sensors on speaking terms: schedule-based medium access control protocols for wireless sensor networks. PhD thesis, University of Twente (June 2007)Google Scholar
  34. 34.
    Wald, R.: Sequential Analysis. Dove Publisher (2004)Google Scholar
  35. 35.
    Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asynchronous Events. PhD thesis, Carnegie Mellon (2005)Google Scholar
  36. 36.
    Younes, H.L.S.: Ymer: A statistical model checker. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  38. 38.
    Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to simulink/stateflow verification. In: HSCC, pp. 243–252. ACM, New York (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexandre David
    • 1
  • Kim G. Larsen
    • 1
  • Axel Legay
    • 2
  • Marius Mikučionis
    • 1
  • Danny Bøgsted Poulsen
    • 1
  • Jonas van Vliet
    • 1
  • Zheng Wang
    • 3
  1. 1.Aalborg UniversityDenmark
  2. 2.INRIA/IRISA RennesFrance
  3. 3.East China Normal UniversityChina

Personalised recommendations